

Uncertainty in Artificial Intelligence Jul 21, 2025 Rio de Janeiro

Tutorial 1

Principled Hyperparameter Optimization and Algorithm Selection

Practical Techniques, Theory, and New Frontiers

Dravyansh (Dravy) Sharma IDEAL Postdoctoral Researcher (joint TTIC+Northwestern)

- Algorithm design for machine learning (aka HP tuning)
- Current approaches in practice
 - Bayesian Optimization, Gradient-based and Bandit-based methods
- Machine learning for algorithm design
 - Learning-theoretic foundations
 - ➢ GJ algorithm framework
- Tuning core ML algorithms
 - Decision Trees
 - Neural networks
- Other aspects, ongoing and future research

Algorithm design for machine learning (aka HP tuning)

- Current approaches in practice
 - Bayesian Optimization, Gradient-based and Bandit-based methods
- Machine learning for algorithm design
 - Learning-theoretic foundations
 - ➢ GJ algorithm framework
- Tuning core ML algorithms
 - > Decision Trees
 - Neural networks
- Other aspects, ongoing and future research

HP tuning is a special case of algorithm selection in Machine Learning

Why so common in ML? Hard problems + role of data

HP tuning is important across ML

- Data prep + HP tuning take up most of the applied ML researcher hours
- Takes up to 90% of the compute
- Critical in high-stakes and large-scale applications

HP transfer is crucial today!

Unavoidable in LLMs where each of the above is magnified multifold!

Algorithm design for machine learning

- Hyperparameter tuning is poorly understood and yet of critical importance
 - why? ML works on data

- There is NO single best algorithm+hyperparameter!
- Must tune/configure for the best performance on domain-specific data
- Current practices require incredible amounts of **compute** and **engineering** efforts, and yet with no guarantees!
- Understanding how the performance actually varies with the hyperparameter is crucial for principled tuning

- Algorithm design for machine learning (aka HP tuning)
- Current approaches in practice
 - Bayesian Optimization, Gradient-based and Bandit-based methods
- Machine learning for algorithm design
 - Learning-theoretic foundations
 - ➢ GJ algorithm framework
- Tuning core ML algorithms
 - Decision Trees
 - Neural networks
- Other aspects, ongoing and future research

Existing approaches and their (theoretical) limitations

- Manual tuning, grid search, random search:
 - inefficient
 - unprincipled
 - no transfer across tasks
 - data-independent grids can be highly suboptimal [Balcan et al. BNVW (COLT'17), BDDKSV (JACM'24)]
 - State-of-the-art:
 - Bayesian Optimization (BO); [e.g. Snoek et al. 2012]
 - Gradient-based;
 - Bandit-based

Gap: Limited <u>theoretical understanding</u>, no guarantees for tuning <u>continuous hyperparameters</u>, typically <u>no transfer</u> across tasks

Random Search

Hyperparameter_One = random.num (range) Hyperparameter_Two = random.num (range) Hyperparameter_X = random.num (range)

But how does the model performance depend on its hyperparameters?

- Short answer: we don't really understand it!
- BO works with a crude approximation: Noisy evaluation of function with certain smoothness properties?
 - But how do we know what are the right smoothness priors?
 - Assumptions needed on noise correlations (kernel function)
 - How to search? (acquisition fns)
- But what is the **actual dependence**? Even on a fixed data instance?

- Gaussian Process:
 - a collection of (infinitely many) random variables that are jointly Gaussian.
 - a distribution over functions models noisy evaluation of some $f(\mathbf{x})$.
 - given by a mean function $m(\mathbf{x})$ and covariance $k(\mathbf{x}, \mathbf{x'})$.

 $E[f(\mathbf{x})] = m(\mathbf{x}).$ $E[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x'}) - m(\mathbf{x'}))] = k(\mathbf{x}, \mathbf{x'}).$

 Since all finite collections of function values are assumed jointly Gaussian, the conditional distribution of any new point given the observed points is also Gaussian, i.e. distribution of mean and variance at x*, given observed points X is

 $\begin{aligned} \mu(\mathbf{x}^*) &= K(\mathbf{x}^*, \, \mathbf{X}) K(\mathbf{X}, \, \mathbf{X})^{-1} f(\mathbf{X}). \\ \sigma^2(\mathbf{x}^*) &= K(\mathbf{x}^*, \, \mathbf{x}^*) - K(\mathbf{x}^*, \, \mathbf{X}) K(\mathbf{X}, \, \mathbf{X})^{-1} K(\mathbf{X}, \, \mathbf{x}^*). \end{aligned}$

Bayesian Optimization

[Timothy Wolodzko github]

BO has its own hyperparameters!

Figure 2: Random functions f drawn from a Gaussian process prior with a power exponential kernel. Each plot corresponds to a different value for the parameter α_1 , with α_1 decreasing from left to right. Varying this parameter creates different beliefs about how quickly f(x) changes with x.

[A Tutorial on Bayesian Optimization, Frazier 2018]

Exception [Berkenkamp, Schoellig, Krause JMLR 2019] But very slow convergence!

Gradient-based approaches

- Gradient descent (and other gradient-based iterative optimization):
 - fundamental algorithm used across deep learning
 - typically used to train the model parameters e.g. neural network weights
 - gradient of loss w.r.t. parameters computed using chain-rule (aka back-propagation or Reverse-Mode Differentiation) [E.g. LeCun et al. (1989)]

- Stochastic gradient descent
 - computes gradient of "one datapoint" at a time
- "Stochastic hypergradient descent"
 - gradient of "validation-loss" w.r.t. hyperparameter
 - Usual too slow, but there are computational tricks [Bengio (2000), Baydin & Pearlmutter (2014), Maclaurin et al. (2015)]

Gradient-based approaches

- "Stochastic hypergradient descent"
 - o gradient of "validation-loss" w.r.t. hyperparameter
 - Usual too slow, but there are computational tricks
- Extension to multiple tasks (meta-learning)
 - MAML (Model-Agnostic Meta-Learning)

[Finn et al. (2017)]

- Online Meta-Learning [Khodak et al. (2019)]
- Unification [HPO + Meta-learning] [Franceschi et al. (2018)]

Essentially bandit problems with additional HP-specific assumptions

1. Hyperband: Each arm has a noisy non-stationary reward that eventually converges to a limiting value [Li, Jamieson, DeSalvo, Rostamizadeh, & Talwalkar (JMLR 2018)]

Essentially bandits problems with additional HP-specific assumptions

2. Rising/improving bandits: Arms have concave "learning curves"

[Heidari, Kearns, Roth (IJCAI 2016), Li et al. (AAAI 2020), Metelli et al. (ICML 2022), Mussi et al. (ICML 2024), Blum and Ravichandran (ALT 2025)]

Known guarantees (and lack thereof)

Bayesian optimization

All approaches are black-box!! (agnostic to structure)

- Guarantees typically need strong prior assumptions
- Need design of kernels (with hyperparameters) and acquisition functions

Guarantees e.g. for GP-UCB assume you can magically do this!

[Srinivas, Krause, Kakade, Seegar (2010)]

Gradient-based methods

- Global optimality typically needs unrealistic convexity/smoothness assumptions

Bandit-based methods

- Guarantees typically only over a finite subset of hyperparameter values (arms)

Hyperparameter tuning and its challenges

• Deep Learning: is powerful, "automated", and has revolutionized machine learning ...

but a major bottleneck for true automation: need for **extensive** hyperparameter tuning!

- Tedious engineering effort + expensive computational resources
- Typical approaches have **limited** theoretical guarantees and completely black-box!

\$\$\$ manual tuning, or poor heuristics

Truly automatic, provably good!

- Algorithm design for machine learning (aka HP tuning)
- Current approaches in practice
 - > Bayesian Optimization, Gradient-based and Bandit-based methods
- Machine learning for algorithm design
 - > Learning-theoretic foundations
 - ➢ GJ algorithm framework
- Tuning core ML algorithms
 - > Decision Trees
 - Neural networks
- Other aspects, ongoing and future research

★ Algorithm families occur frequently in machine learning

- Often as tunable "hyperparameters"
- One could smoothly "interpolate" good heuristics

Regularized linear regression

Interpolate: elastic net (best of both worlds!)

Repeated problems from the same problem domain

- Expected with regular use of ML
- May come *randomly* (optimistic) or in an *adversarial sequence* (pessimistic)

Technical challenges:

- Algorithms form an interesting "concept space"
- Sharp transition boundaries in optimization objective
- Particularly tricky to handle multiple "hyperparameters"

Data-driven algorithm design [GR16, Bal20, Sha24]

- Instead of tuning for one specific problem, we tune the **hyperparameter that generalizes** across **a collection of related problems**.
- Concretely:
 - x is a problem instance from a problem set χ , our (infinite) algorithm family A
 - **D** is a **problem distribution** over $\boldsymbol{\chi}$, representing the *application-specific domain*
 - We also study no-regret **online learning**, where instances arrive in a sequence
- E.g., academic email spam filter for Gmail, or electronic products sold on Amazon

- ★ Repeated problems e.g. emails on an email server, spam vs. non-spam Goal: learn how to connect points using a graph s.t. a (soft) min-cut yields accurate predictions
 - **statistical learning**: tight upper+lower bounds on learning-theoretic complexity
 - online learning: primal-dual style algorithms achieve no regret, under mild assumptions

Tuning different aspects of decision tree learning

- Splitting criterion (which node to split when building the tree?)
 - A **novel algorithmic family** which unifies entropy, Gini impurity and Kearns-Mansour criterion
 - Sample complexity of selecting best splitting algorithm
- Bayesian methods (Parameters to select initial tree skeleton)
- **Pruning** (Deleting nodes to avoid overfitting)
- Interpretability (Adding tree size to cost with tunable parameter)

- Algorithm design for machine learning (aka HP tuning)
- Current approaches in practice
 - Bayesian Optimization, Gradient-based and Bandit-based methods
- Machine learning for algorithm design
 - Learning-theoretic foundations
 - ➢ GJ algorithm framework
- Tuning core ML algorithms
 - Decision Trees
 - Neural networks
- Other aspects, ongoing and future research

Primal and dual utility functions

- Denote input instance space $\boldsymbol{\mathcal{X}}$ and Hyperparameter space \boldsymbol{A}
- Utility (performance) on any instance for any hyperparameter are given by a function:

 $u(\mathbf{x}, \alpha) : \mathbf{X} \times A \rightarrow [0, H]$

• Primal utility function class:

 $U = \{u_{\alpha} : \mathcal{X} \to [0, H] \mid \alpha \in A\}$

• Dual utility function class:

 $U^* = \{u^*_{x} : A \to [0, H] \mid x \in \mathcal{X}\}$

Given $\varepsilon > 0$ and $0 < \delta < 1$, what is the sample complexity $m(\varepsilon, \delta)$?

- Standard PAC-Learning approach: bound the learning-theoretic complexity of U $U = \{u_{\alpha} : \mathcal{X} \to [0, H] \mid \alpha \in A\}$
- Complexity measure: pseudo-dimension, Pdim(*U*)
 - The maximum size *n* such that *U* can "shatter" $\{x_{1'}, \dots, x_n\}$, using thresholds $t_{1'}, \dots, t_n \in \mathbb{R}$
 - by "shattering", we mean $|\{\operatorname{sign}(u_{\alpha}(x_1) t_1), \ldots, \operatorname{sign}(u_{\alpha}(x_n) t_n)| \ u_{\alpha} \in U\}| = 2^n$
- Classical learning theory: If Pdim(U) is finite, then $m(\varepsilon, \delta) = O(H/\varepsilon^2(Pdim(U) + \log 1/\delta))$

Analogue of VC dimension for real-valued functions

Statistical learning theory: sample complexity and pseudo-dimension

• Simple examples to illustrate pseudo-dimension

Straight lines in 2D, functions $f_{a, b, c}(x, y) = ax + by + c$ for real a, b, c.

 $F = \{f_{a, b, c}\}.$ Pdim(F) = ?

Primal and dual utility functions

- So we want to bound the pseudo-dimension of the primal function class *U*.
- But the structure of *U* is too complex!
- On the otherwise, it is often easier to establish the structure of the dual class U^* .

• A general tool (for bounding Pdim of primal using dual structure):

Theorem [BDDKSV STOC'21]: Suppose the dual function class has a piecewise-structure with k boundary functions coming from some function class F^* , and piece functions from class G^* . Then, $Pdim(U) = O((VCdim(F^*) + Pdim(G^*))\log k)$.

Example application: Linkage or hierarchical clustering.

Given a collection of n objects, organize them into hierarchy e.g. "categories" of news articles

Example application: Linkage or hierarchical clustering. **Algorithm**:

- 1. Start with each object as its own cluster.
- 2. Repeatedly merge "most similar" clusters.

Example application: Linkage or hierarchical clustering. **Algorithm**:

- 1. Start with each object as its own cluster.
- 2. Repeatedly merge "most similar" clusters.

But what is "most similar"? Define a notion of distance between cluster pairs:

Single linkage:DComplete linkage:D

$$D_{\min}(A, B) = \min_{a \in A, b \in B} d(a, b)$$
$$D_{\max}(A, B) = \max_{a \in A, b \in B} d(a, b)$$

How to tune α ?

Interpolate linkage: $D_{\alpha}(A, B) = \alpha D_{\min}(A, B) + (1 - \alpha)D_{\max}(A, B)$

Piecewise constant structure with poly(n) pieces \Rightarrow Pdim(U) = O(log n)

What if we have multiple algorithms each with its own hyperparameters?

Algorithms: A_1, A_2, \dots, A_k Utility function classes (resp. Hyperparameters): U_1, U_2, \dots, U_k

What is the sample complexity of algo+hyperparameter selection?

Theorem: Sample complexity of CASH is $O(H^2/\epsilon^2(\log k + \max_i Pdim(U_i)))$.

[Balcan and Sharma, Arxiv'25]

- Algorithm design for machine learning (aka HP tuning)
- Current approaches in practice
 - Bayesian Optimization, Gradient-based and Bandit-based methods
- Machine learning for algorithm design
 - Learning-theoretic foundations
 - ➤ GJ algorithm framework
- Tuning core ML algorithms
 - Decision Trees
 - Neural networks
- Other aspects, ongoing and future research

Another general useful technique for bounding the pseudo-dimension of function classes based on algorithms with *real parameters* that perform *arithmetic operations*.

- Original results yield Pdim bounds in terms of the running time of the algorithm.
- The corresponding bounds are sub-optimal for data-driven algorithm design.

Recent works provide refined GJ frameworks for data-driven algorithm design.

[Bartlett, Indyk, Wagner, COLT'22], [Balcan, Nguyen, Sharma, TMLR'25]

Note: All expressions computed by the GJ algorithm are rational functions (ratios of polynomials) of its inputs

Theorem: Suppose the algorithm family has *n* real parameters. Also, for any problem instance *x* and real threshold *r*, there is a GJ algorithm $\Gamma_{x,r}$ that determines whether $u_{\alpha}(x) \ge r$ by evaluating at most Π distinct predicates (rational expressions) with maximum degree Δ . Then,

 $Pdim(U) = O(n \log(\Delta \Pi)).$

Refined GJ Framework [Bartlett, Indyk, Wagner, COLT'22]

Theorem: Suppose the algorithm family has *n* real parameters. Also, for any problem instance *x* and real threshold *r*, there is a GJ algorithm $\Gamma_{x,r}$ that determines whether $u_{\alpha}(x) \ge r$ by evaluating at most Π distinct predicates (rational expressions) with maximum degree Δ . Then,

 $Pdim(U) = O(n \log(\Delta \Pi)).$

Example application: Tuning the ridge penalty λ in linear regression. $\min_{w} ||Xw - y||^2 + \lambda ||w||^2$

Input: Training data *X*, *y* and validation data *X'*, *y'*. **Goal**: Tune λ to minimize validation loss.

Applying GJ framework: Note that the ridge solution is $w_{\lambda} = (X^T X + \lambda I)^{-1} X^T y$.

Lemma: $w_{\lambda} = (X^T X + \lambda I)^{-1} X^T y$ is a rational function of lambda with degree at most *d* (#features).

 \Rightarrow Validation loss is a rational function with degree at most 2*d*.

 \Rightarrow GJ algorithm to check $u_{\lambda}(x) \ge r$ has degree 2d and predicate complexity 1.

Theorem: Sample complexity of tuning λ is $O(\log(d)/\epsilon^2)$.

Example application: Low-rank approximation.

Input: Given a sparse matrix $A \in \mathbb{R}^{n \times n}$ with $||A||_F = 1$, target rank k < n. **Goal**: Sparse matrix \tilde{A} with rank k that minimizes (approximates A well).

Exact algorithm based on SVD (singular value decomposition) is inefficient! Faster algorithm IVY [Indyk, Vakilian, Yuan '19] is family of parameterized heuristics uses a $m \ge n$ auxiliary matrix (runtime nearly linear in #non-zero entries!).

Theorem: Sample complexity of tuning IVY is $O(mn/\epsilon^2)$.

Pfaffian function chain: A sequence of multivariate functions f_1, f_2, \ldots, f_q with arguments a_1, \ldots, a_n , if all partial derivatives can be expressed via polynomials of the arguments or previous functions in the chain, i.e.

$$rac{\partial f_j}{\partial a_i} = P_{i,j}\left(a_1,\ldots,a_n,f_1,\ldots,f_j
ight)$$

Pfaffian function: Polynomial fn of the Pfaffian chain $Q(a_1, \ldots, a_n, f_1, \ldots, f_q)$

Chain length, *q*: number of functions in the sequence

Pfaffian degree, M: Maximum degree of a derivative polynomials

Degree, Δ : Maximum degree of a polynomial of a chain of Pfaffian functions, Q

Examples:

1. $e^{2a} + a^3$: Chain length ? Pfaffian degree ? degree ?

2. $\log \sqrt{a}$: Chain length ? Pfaffian degree ? degree ?

3. $a^{1/2} + a^{2/3}$: Chain length ? Pfaffian degree ? degree ?

Pfaffian function chain: A sequence of multivariate functions f_1, f_2, \ldots, f_q with arguments a_1, \ldots, a_n , if all partial derivatives can be expressed via polynomials of the arguments or previous functions in the chain, i.e. $\frac{\partial f_j}{\partial a_i} = P_{i,j}(a_1, \ldots, a_n, f_1, \ldots, f_j)$ Pfaffian function: Polynomial fn of the Pfaffian chain $Q(a_1, \ldots, a_n, f_1, \ldots, f_q)$ Chain length, *g*: number of functions in the sequence

Pfaffian degree, M: Maximum degree of a derivative polynomials

Degree, Δ : Maximum degree of a polynomial of a chain of Pfaffian functions, Q

1. $e^{2a} + a^3$: Chain length ? Pfaffian degree ? degree ?

1. $e^{2a} + a^3$: Chain length ? Pfaffian degree ? degree ? $f_1(a) = e^{2a} + a^3$; $f_1'(a) = 2e^{2a} + 3a^2 = 2f_1(a) + 3a^2 = P(a, f_1(a))$; $Q(a, f_1(a)) = f_1(a)$ Chain length = 1, Pfaffian degree = 2, degree = 1 $f_1(a) = e^a$; $f_1'(a) = f_1(a) = P(a, f_1(a))$; $Q(a, f_1(a)) = (f_1(a))^2 + a^3$

Chain length = 1, Pfaffian degree = 1, degree = 3

Pfaffian function chain: A sequence of multivariate functions f_1, f_2, \ldots, f_q with arguments a_1, \ldots, a_n , if all partial derivatives can be expressed via polynomials of the arguments or previous functions in the chain, i.e. $\frac{\partial f_j}{\partial a_i} = P_{i,j}(a_1, \ldots, a_n, f_1, \ldots, f_j)$ Pfaffian function: Polynomial fn of the Pfaffian chain $Q(a_1, \ldots, a_n, f_1, \ldots, f_q)$ **Chain length**, *q*: number of functions in the sequence

Pfaffian degree, M: Maximum degree of a derivative polynomials

Degree, Δ : Maximum degree of a polynomial of a chain of Pfaffian functions, Q

2.
$$\log \sqrt{a}$$
: Chain length ? Pfaffian degree ? degree ?

2. $\log \sqrt{a}$: Chain length ? Pfaffian degree ? degree ? $f_1(a) = \log a$; $f_1'(a) = 1/a$

Not a polynomial in log *a* and *a*!

 $f_1(a) = 1/a$; $f_2(a) = \log a$;

 $f_1'(a) = -a^{-2} = P(a, f_1(a)); f_1'(a) = 1/a = P(a, f_1(a), f_2(a)); Q(a, f_1(a)) = \frac{1}{2}f_2(a)$

Chain length = 2, Pfaffian degree = 2, degree = 1

Pfaffian function chain: A sequence of multivariate functions f_1, f_2, \ldots, f_q with arguments a_1, \ldots, a_n , if all partial derivatives can be expressed via polynomials of the arguments or previous functions in the chain, i.e. $\frac{\partial f_j}{\partial a_i} = P_{i,j}(a_1, \ldots, a_n, f_1, \ldots, f_j)$ Pfaffian function: Polynomial fn of the Pfaffian chain $Q(a_1, \ldots, a_n, f_1, \ldots, f_q)$ Chain length, *g*: number of functions in the sequence

Pfaffian degree, M: Maximum degree of a derivative polynomials

Degree, Δ : Maximum degree of a polynomial of a chain of Pfaffian functions, Q

3. $a^{1/2} + a^{2/3}$: Chain length? Pfaffian degree? degree?

Theorem: Suppose the algorithm family has *n* real parameters. Also, for any problem instance *x* and real threshold *r*, there is a **Pfaffian** GJ algorithm $\Gamma_{x,r}$ that determines whether $u_{\alpha}(x) \ge r$ by evaluating Π distinct predicates with Pfaffian chain length *q*, degree Δ , and Pfaffian degree *M*. Then, $Pdim(\mathcal{U}) = O(n^2q^2 + nq\ln(\Delta + M) + n\ln\Pi)$

Algorithm:

- 1. Start with each object as its own cluster.
- 2. Repeatedly merge "most similar" clusters.

But what is "most similar"? Define a notion of distance between cluster pairs:

Single linkage: Complete linkage:

$$D_{\min}(A, B) = \min_{a \in A, b \in B} d(a, b)$$
$$D_{\max}(A, B) = \max_{a \in A, b \in B} d(a, b)$$

How to tune α , β ?

Also, what if we have multiple distances $d_{1'} d_{2'} \dots d_{L}$?

1. Interpolate distances: $d_{\beta} = \beta_1 d_1 + \beta_2 d_2 + \dots + \beta_L d_L$ 2. Interpolate linkage: $D_{\alpha,\beta}(A, B) = (\min_{a \in A, b \in B} (d_{\beta}(a, b))^{\alpha} + \min_{a \in A, b \in B} (d_{\beta}(a, b))_{50}$ Algorithm:

- 1. Start with each object as its own cluster.
- 2. Repeatedly merge "most similar" clusters.

 $D_{\alpha,\beta}(A, B) = (\min_{a \in A, b \in B} (d_{\beta}(a, b))^{\alpha} + \min_{a \in A, b \in B} (d_{\beta}(a, b))^{\alpha})^{1/\alpha}$

The algorithm uses exponents:

so arithmetic operations not enough to compute the clusters! But Pfaffian GJ framework applies!

Theorem: Sample complexity of tuning α , β is $O(n^4L^2/\epsilon^2)$.

Algorithm:

- 1. Start with each object as its own cluster.
- 2. Repeatedly merge "most similar" clusters.

 $D_{\alpha,\beta}(A, B) = (\min_{a \in A, b \in B} (d_{\beta}(a, b))^{\alpha} + \min_{a \in A, b \in B} (d_{\beta}(a, b))^{\alpha})^{1/\alpha}$

Merge decisions are governed by boundaries given by following inequation in α , β $D_{\alpha,\beta}(A, B) \ge D_{\alpha,\beta}(A', B')$

for some clusters A, B, A', B'

Equivalently, the boundaries are given by (at most n^8 equations)

$$(d_{\beta}(a_{1}, b_{1}))^{\alpha} + (d_{\beta}(a_{2}, b_{2}))^{\alpha} - (d_{\beta}(a_{3}, b_{3}))^{\alpha} - (d_{\beta}(a_{4}, b_{4}))^{\alpha} \ge 0$$

for some points $a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, a_{4}, b_{4}$

What are the

Pfaffian chains?

$$(\mathbf{d}_{\boldsymbol{\beta}}(a_{1'} \ b_{1}))^{\alpha} + (\mathbf{d}_{\boldsymbol{\beta}}(a_{2'} \ b_{2}))^{\alpha} - (\mathbf{d}_{\boldsymbol{\beta}}(a_{3'} \ b_{3}))^{\alpha} - (\mathbf{d}_{\boldsymbol{\beta}}(a_{4'} \ b_{4}))^{\alpha} \ge 0$$

What are the Pfaffian chains?

For each pair of points (a, b), define 3 functions

```
\begin{split} f_{a,b}(\boldsymbol{\beta}) &= 1/d_{\boldsymbol{\beta}}(a,b);\\ g_{a,b}(\boldsymbol{\beta}) &= \ln d_{\boldsymbol{\beta}}(a,b);\\ h_{a,b}(\boldsymbol{\beta}) &= (d_{\boldsymbol{\beta}}(a,b))^{\alpha} \end{split}
```

Chain length < $3n^2$, degree 1, Pfaffian degree 2 Number of parameter = L + 1Number of distinct predicates < n^8 Our result implies Pdim(U) = O(n^4L^2)

- Algorithm design for machine learning (aka HP tuning)
- Current approaches in practice
 - Bayesian Optimization, Gradient-based and Bandit-based methods
- Machine learning for algorithm design
 - Learning-theoretic foundations
 - ➢ GJ algorithm framework
- Tuning core ML algorithms
 - Decision Trees
 - Neural networks
- Other aspects, ongoing and future research

Low-rank approximation [Bartlett, Indyk, Wagner, COLT 2022]

Regularizing linear (Elastic Net) and logistic regression [BKST NeurIPS 2022, BNS NeurIPS 2023, BGS 2025]

Simulated Annealing [Blum, Dan, Seddighin, AISTATS 2021]

Learning to branch and cut [Balcan, Dick, Sandholm, Vitercik, ICML 2018, JACM 2024]

Clustering (both k-center and hierarchical) [BNVW COLT 2017, BDW NeurIPS 2018, BDL ICLR 2020]

Gradient descent [Gupta and Roughgarden, ITCS 2016]

Integer and Linear Programming [Balcan et al., Khodak et al., Cheng and Basu, Sakaue and Oki (2024)]

Knapsack, Maximum Weighted Independent Set [Gupta and Roughgarden, ITCS 2016, Balcan et al., FOCS 2018]

Max cut, Max 2-SAT [Balcan et al., COLT 2017]

Dynamic Programming, Sequence Alignment [Balcan et al., COLT 2017, STOC 2021, NeurIPS 2024]

Mechanism and game design [Balcan et al., EC18, NeurIPS 2024, Jin et al. NeurIPS 2024]

Open questions and research directions

- Provable tuning of hyperparameters in other fundamental algorithms and areas, E.g.
 - Causal inference algorithms
 - Constraint Satisfaction e.g. algorithms for SAT
 - Graph Algorithms
 - Bayesian Optimization itself! (e.g. [Sharma and Suggala (AAAI 25)] tune GP bandits)
 ...
- Computational efficiency and complexity of hyperparameter tuning
- Lower bounds on sample complexity
 - Tight bounds known only in some cases

- Algorithm design for machine learning (aka HP tuning)
- Current approaches in practice
 - Bayesian Optimization, Gradient-based and Bandit-based methods
- Machine learning for algorithm design
 - Learning-theoretic foundations
 - ➢ GJ algorithm framework
- Tuning core ML algorithms
 - > Decision Trees
 - Neural networks
- Other aspects, ongoing and future research

ML needs to be interpretable!

Decision Trees

Trees for classification:

- Each internal node ⇔ Splitting rule
- Each leaf node ⇔ Single Class

Interpretable ML models

- axis-parallel decision boundaries
- Neural nets are hard to interpret

Hard to learn optimal trees, but several useful heuristics!

Learning optimal decision trees is hard!

Hardness of DT learning

- NP-complete. [Laurent and Rivest (1976)]
- Superconstant Inapproximability of Decision Tree Learning.

[Koch et al. COLT 2024] [Koch and Strassle FOCS 2023, FOCS 2024]

Faster optimal decision trees (speed up the exp time branch-and-bound algorithm)

- [Hu et al. NeurIPS 2019]
- [McTavish et al. AAAI 2022]
- [Babbar et al. ICML 2025] (combines greedy with branch-and-bound)

Top-down decision tree learning Inputs: Node function class \mathcal{F} , tree size t, splitting criterion G

$\begin{array}{l} \mbox{Top-down decision tree learning} \\ \mbox{Inputs: Node function class \mathcal{F}, tree size t,} \\ \mbox{splitting criterion G} \end{array}$

• Start with leaf node

Top-down decision tree learning

Inputs: Node function class \mathcal{F} , tree size \mathbf{t} , splitting criterion \mathbf{G}

- Start with leaf node
- While at most t leaf nodes
 - Split leaf node I using node function **f** which maximizes "splitting criterion"

Top-down decision tree learning

Inputs: Node function class \mathcal{F} , tree size \mathbf{t} , splitting criterion \mathbf{G}

- Start with leaf node
- While at most **t** leaf nodes
 - Split leaf node I using node function **f** which maximizes "splitting criterion"

 $\mathcal{F} = \{ \text{Smoke, Age > 30, Age > 50} \}$

Key decision: Which node to split next and how?

 $\mathcal{F} = \{ \text{Smoke, Age > 30, Age > 50} \}$

Splitting criterion

learn DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0, monotonic_cst=None) [source]

A decision tree classifier.

Read more in the User Guide.

Parameters:

criterion : {"gini", "entropy", "log_loss"}, default="gini"

Empirical research suggests different criteria work best on different data [Mingers 1989]

- Entropy criterion
- Gini impurity
- Kearns Mansour 96

Algorithm selection via hyperparameter tuning

(α, β) -Tsallis entropy

A single criterion which interpolates all three!

$$g_{\alpha,\beta}^{\text{TSALLIS}}(P) := \frac{C}{\alpha - 1} \left(1 - \left(\sum_{i=1}^{c} p_i^{\alpha} \right)^{\beta} \right)$$

Gini impurity
KM96
Entropy

Splitting criterion

Splitting criterion

Theorem: We can learn to tune (α, β) using $O\left(\frac{t \log |\mathcal{F}|t}{\epsilon^2}\right)$ problem samples.

Theorem: We can learn to tune (α, β) using $O\left(\frac{t \log |\mathcal{F}|t}{\epsilon^2}\right)$ problem samples.

Proof insights:

- Analyse accuracy as a function of (α, β) on a fixed instance (X, y)
- Induction over top-down rounds, bounding the number of distinct behaviors (which node is split and how) in each round
- Over *t* rounds, $\tilde{O}(|\mathcal{T}|^{2t}t^{2t})$ distinct behaviors, which implies pseudo-dimension is $O(t \log |\mathcal{T}|t)$.
The algorithm [Chipman, George, McCulloch 1998]

- 1. Prior:
 - a. Start with a single root node
 - b. For each node, split it with probability $p_{\text{SPLIT}} = \sigma(1 + d)^{-\varphi}$
 - c. Select uniformly random splitting rule at each node if split
 - d. Repeat step b for each new node

The algorithm [Chipman, George, McCulloch 1998]

- 1. Prior:
 - a. Start with a single root node
 - b. For each node, split it with probability $p_{\text{SPLIT}} = \sigma(1 + d)^{-\varphi}$
 - c. Select uniformly random splitting rule at each node if split
 - d. Repeat step b for each new node
- 2. Stochastic search:
 - a. T^0 = initial skeleton with random rules according to Prior
 - b. $T^* \leftarrow$ obtained by small modification to T^i
 - c. $T^{i+1} = T^*$ with probability $q(T^i, T^*)$ based on Dirichlet posterior, $T^{i+1} = T^i$ otherwise

The algorithm [Chipman, George, McCulloch 1998]

- 1. Prior:
 - a. Start with a single root node
 - b. For each node, split it with probability $p_{\text{SPLIT}} = \sigma (1 + d)^{-\varphi}$
 - c. Select uniformly random splitting rule at each node if split
 - d. Repeat step b for each new node
- 2. Stochastic search:
 - a. T^0 = initial skeleton with random rules according to Prior
 - b. $T^* \leftarrow$ obtained by small modification to T^i
 - c. $T^{i+1} = T^*$ with probability $q(T^i, T^*)$ based on Dirichlet posterior, $T^{i+1} = T^i$ otherwise

σ, φ are tunablehyperparameters

Goal: Tune σ , ϕ to maximize expected accuracy of the learned decision tree for datasets sampled according to some distribution D.

Insight: Analyze the structure of the loss as a function of hyperparameters for fixed random bits

piecewise constant with exponential boundaries and at most t^2N^2 pieces over *N* problem samples.

Result: $O(\log t / \epsilon^2)$ datasets sampled from D are sufficient to learn near-optimal parameters σ , φ .

Post-processing step to simplify tree:

- Reduces overfitting
- Increases interpretability

Post-processing step to simplify tree:

- Reduces overfitting
- Increases interpretability

Post-processing step to simplify tree:

- Reduces overfitting
- Increases interpretability

Min cost-complexity pruning

- Maximizing accuracy on training set typically leads to large trees
- Add tree size as a penalty term in training loss

```
Cost-complexity, R(T, D) = L(T, D) + \alpha | leaves(T) |
Tunable hyperparameter
```

Best HP is data-specific,

so need to learn!!

Result: $O(\log t / \epsilon^2)$ datasets sampled from D are sufficient to learn near-optimal α

Modified objective, $R(T, D) = L(T, D) + \eta | leaves(T) |$

Similar to cost-complexity pruning, but also modify test loss

- η controls the accuracy-interpretability trade-off
- we tune splitting/pruning hyperparameters simultaneously to maximize the modified objective

Regularized objective over a collection of K trees (size at most t), $L({T_i}, D) = l({T_i}, D) + \frac{1}{2} \lambda \sum_k ||weights of leaves in T_k||^2$

Splitting-criterion in XGBOOST [Chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a score based on first and second order gradients $\frac{G_L^2}{H_I + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda}$

State-of-the-art approach for tabular datasets! [McElfresh et al. (NeurIPS 2023), Jayawardhana et al. (2025)]

We use a GJ framework based analysis.

Regularized objective over a collection of K trees (size at most t), $L({T_i}, D) = l({T_i}, D) + \frac{1}{2} \lambda \sum_k ||weights of leaves in T_k||^2$

Splitting-criterion in XGBOOST [Chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a score based on first and second order gradients $\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda}$

There are at most tK|T| different candidate splits, or at most $t^2K^2|T|^2$ pairs Also over the course of XGBOOST, we have at most tK splits.

- ⇒ Computable using a GJ algorithm with at most $(t^2K^2|\mathcal{F}|^2)^{tK}$ predicates (degree 6)
- \Rightarrow Pdim(U) = O(tK log(tK | F|))

Open questions and research directions

- Efficient implementations of learning algorithms
- Extensions to other interpretable techniques
- Lower bounds on sample efficiency
- Online learning
- Combining with other guarantees e.g. robustness

- Algorithm design for machine learning (aka HP tuning)
- Current approaches in practice
 - Bayesian Optimization, Gradient-based and Bandit-based methods
- Machine learning for algorithm design
 - Learning-theoretic foundations
 - ➢ GJ algorithm framework
- Tuning core ML algorithms
 - > Decision Trees
 - Neural networks
- Other aspects, ongoing and future research

Tuning deep networks: parameters and hyperparameters

- fixed during training Hyperparameter space $A = [\alpha_{\min}, \alpha_{\max}] \subset \mathbb{R}$ (hyperparameter α) updated during training Model parameter space $W \subseteq \mathbb{R}$ (parameters/weights w) -Example (learning activation functions): w_I Consider a DNN $\tau_{v,v}$ with model weights $w = (w_1, ..., w_L)$ Ο Parametric ReLU activation function 0 σ $ext{PReLU}(x) = egin{cases} x, & ext{if } x \geq 0 \ ax. & ext{otherwise} \end{cases}$ f(y) = ayW More generally, one can interpolate* any activation functions Ο $\sigma(z) = \alpha o_1(z) + (1 - \alpha) o_2(z)$
 - where o_1, o_2 are common activation functions, α is interpolation hyperparameter

*inspired by DARTS approach for Neural Architecture Search [Liu et al. ICLR'19]

Our focus here is on tuning "model" or "architectural" hyperparameters:

- Are directly a part of the learned deep network $\tau_{\alpha,w}$
- Impact training, but stay fixed as we learn the weights w
- e.g. activation function parameters,

kernel parameter in graph neural networks

Contrast this with "optimization" hyperparameters in the training procedure of the deep network

• They impact training too, but their effect on the learned network is fully captured by w

Formalism: the utility function

- <u>Parameter-dependent</u> utility function $f(x, \alpha, w)$ the performance when using hyperparameter α and parameter w, operating on problem instance x
- Utility function $u_{\alpha}(x) = \sup_{w} f(x, \alpha, w)$

the performance of trained network using hyperparameter α , operating on problem instance x

• Example

• $f(x, \alpha, w) = H - ||y - \tau_{\alpha, w}(X)||_2^2$ is the parameter-dependent **utility** function

(the loss is $||y - \tau_{\alpha,w}(X)||_2^2$)

•
$$u_{\alpha}(\mathbf{x}) = \sup_{w} f(\mathbf{x}, \alpha, w)$$
 is the utility function

Formalism: data-driven hyperparameter tuning

• Tuned hyperparameter \hat{a} that has performance close to the optimal $\alpha^* = \max_{\alpha} E_{x \sim D}[u_{\alpha}(x)]$ $|E_{x \sim D}[u_{\hat{a}}(x)] - E_{x \sim D}[u_{\alpha^*}(x)]| < \varepsilon$

with probability at least $1 - \delta$, using problem instances $x_{1'} \dots x_m \sim D^m$

• **Question**: How many problem instances $m(\varepsilon, \delta)$ are enough?

Given $\varepsilon > 0$ and $0 < \delta < 1$, what is the sample complexity $m(\varepsilon, \delta)$?

- Standard PAC-Learning approach: bound the learning-theoretic complexity of U $U = \{u_{\alpha} : \mathcal{X} \to [0, H] \mid \alpha \in A\}$
- Complexity measure: pseudo-dimension, Pdim(*U*)
 - The maximum size *n* such that *U* can "shatter" $\{x_1, \dots, x_n\}$, using thresholds $t_1, \dots, t_n \in \mathbb{R}$
 - by "shattering", we mean $|\{\operatorname{sign}(u_{\alpha}(x_1) t_1), \ldots, \operatorname{sign}(u_{\alpha}(x_n) t_n) \mid u_{\alpha} \in U\}| = 2^n$
- Classical learning theory: If Pdim(U) is finite, then $m(\varepsilon, \delta) = O(H^2/\varepsilon^2(Pdim(U) + \log 1/\delta))$

Piecewise polynomial parameter-dependent utility function

- Recall utility function: $u_{\alpha}(x) = \sup_{w} f(x, \alpha, w)$, where parameter-dependent utility: $f(x, \alpha, w)$
- Motivated by classical work on NNs*, we assume: for any fixed problem instance x_r , the **parameter-dependent dual** $f_x(\alpha, w) := f(x, \alpha, w)$ admits a **piecewise polynomial structure**:
 - There are polynomial **boundary functions** $h_{x,1}(\alpha, w), \dots, h_{x,M}(\alpha, w) \dots$
 - that partition the domain $A \times W$ of $f_x(\alpha, w)$ into connected components "pieces" $R_{x,1'} \dots, R_{x,N}$
 - $f_x(\alpha, w)$ restricted on $R_{x, i}$ is polynomial $f_{x, i}(\alpha, w)$ (piece function)

*[Bartlett et al. 1998, Bartlett et al. 2019]

• Boundary functions $h_{x,1}$ and $h_{x,2}$

- Boundary functions $h_{x,1}$ and $h_{x,2}$
- partition domain into connected components $R_{x,1'}$..., $R_{x,N}$

- Boundary functions $h_{x,1}$ and $h_{x,2}$
- partition domain into connected components $R_{x,1'}$..., $R_{x,N}$
- $f_x(\alpha, w)$ restricted on $R_{x,i}$ is poly. $f_{x,i}(\alpha, w)$

- Boundary functions $h_{x,1}$ and $h_{x,2}$
- partition domain into connected components $R_{x,1'}$..., $R_{x,N}$
- $f_x(\alpha, w)$ restricted on $R_{x,i}$ is poly. $f_{x,i}(\alpha, w)$

To bound Pdim(*U*), we're interested in: $u_x^*(\alpha) := u_\alpha(x) = \sup_w f_x(\alpha, w)$

Key mathematical question

• If $f_x(\alpha, w)$ is piecewise-polynomial, can we give a bound on the piecewise structure of

 $u_{x}^{*}(\alpha) := u_{\alpha}(x) = \sup_{w} f_{x}(\alpha, w)$

• To bound Pdim(U), it is sufficient to bound the number of discontinuities and number of local maxima of $u_{x}^{*}(\alpha)$

```
Theorem (informal): Pdim(U) = O(\log N + d \log(\Delta M)), whereN is the number of connected componentsM is the number of boundariesd is the dimension of w\Delta is the maximum polynomial degree
```

Learning the interpolated activation function

- DNN $\tau_{\alpha, w}$ with *L* layers
- Layer *i*: W_i params (total W), k_i nodes (total k)
- $\sigma(z) = \alpha o_1(z) + (1 \alpha) o_2(z)$, where o_1, o_2 piecewise poly. with max degree Δ , *p* breakpoints
- T samples (not assumed iid) in each problem instance

Theorem (informal): $Pdim(U) = O(\log N + d \log(\Delta M))$, where
N is the number of connected components
M is the number of boundaries
$\frac{d}{d}$ is the dimension of w
Δ is the maximum polynomial degree

Application:

For the activation function interpolation: $Pdim(U) = O(L^2W \log \Delta + LW \log(Tpk))$

New Techniques

Analyze the piecewise structure of dual utility function: $u_x^*(\alpha) := u_\alpha(x) = \sup_w f_x(\alpha, w)$

- bound number of discontinuities
- bound number of local maxima

Key steps in our analysis:

- 1. Effectively reduce the problem to a single piece with polynomial boundaries
- 2. Identify all possible locations of "best weights" w as the hyperparameter α is varied.
 - a. Roughly speaking, these are smooth 1-dimensional manifolds corresponding to (appropriate intersections of) derivative curves or boundaries
- 3. Decompose these locations into "monotonic curves"
- 4. Bound the **number of local extrema** of $f_x(\alpha, w)$ of along any monotonic curve

Reduce the problem to a single piece with polynomial boundaries

- Partition hyperparameter space A into intervals based on α -end points of the pieces

- Given a fixed finite set of pieces, it is sufficient to analyze a single piece

Where can the "best weights" possibly be located?

 $u_{x}^{*}(\alpha) := u_{\alpha}(x) = sup_{w}f_{x}(\alpha, w)$

Fermat's interior extremum theorem

 \Rightarrow either boundaries, or

"derivative curves"

i.e. $\partial f_x(\alpha, w) / \partial w_i = 0$ for i = 1, ..., d

Where can the "best weights" possibly be located?

boundaries or derivative curves

(roughly) these are both smooth1-dimensional manifolds under mildregularity assumptions

Derivative curves:

 $\partial f_x(\alpha, w) / \partial w_i = 0$ for i = 1, ..., d

d (d-dimensional) hypersurfaces in \mathbb{R}^{d+1}

Where can the "best weights" possibly be located?

boundaries or derivative curves

(roughly) these are both smooth1-dimensional manifolds under mildregularity assumptions

Intersections of $S \leq d$ boundaries:

 $h_{x,j}(\alpha, w) = 0$ for $j \in S$

Lagrangian: $f_x(\alpha, w) + \sum_j \lambda_j h_{x,j}(\alpha, w)$

 \Rightarrow d + S hypersurfaces in \mathbb{R}^{d+S+1}

Decompose these (almost everywhere) one-dimensional manifolds into monotonic curves

Key property: if the hyperplane $\alpha = \alpha_0$ intersects monotonic curve C, it does so in a unique point

Use the Lagrange Multiplier theorem and Bezout's theorem^{*} to bound the number of local extrema of $f_x(\alpha, w)$ along any monotonic curve C.

 $C \rightarrow$ intersection of polynomial equations (in α , w and possibly some Lagrange multipliers)

 $f_{x}(\alpha, w) \rightarrow$ a polynomial objective

 \Rightarrow All the Lagrangian derivatives are polynomial equations

* (from algebraic geometry) roughly, gives a bound on the number of simultaneous solutions of polynomial equations
(a) The **discontinuities** of $u_x^*(\alpha)$ are upper bounded by our partition into intervals with a fixed set of monotonic curves

(b) **Lemma**: The local maxima of $g(x) = \max g_i(x)$ are contained in the set of local maxima of $g_i(x)$

Lemma: If there are at most B_1 discontinuities and at most B_2 local maxima in any u_x^* , then $Pdim(U) = O(\log (B_1 + B_2))$.

Gradient descent algorithm

Inputs: initial point *x*, iterations *H*, threshold θ . Hyperparameter: η

- 1: Initialize $x_1 \leftarrow x$
- 2: for i = 1, ..., H do
- 3: **if** $||\nabla f(x_i)|| < \theta$ then
- 4: Return x_i
- 5: $x_{i+1} = x_i \eta \nabla f(x_i)$

Output: x_i

Prior work by Gupta and Roughgarden (2016):

Assumes: *f* is convex and smooth

Sample complexity of tuning learning rate is O(H³/ε²)

We get $O(H^3/\epsilon^2)$ sample complexity even for non-convex non-smooth functions!

- Algorithm design for machine learning (aka HP tuning)
- Current approaches in practice
 - Bayesian Optimization, Gradient-based and Bandit-based methods
- Machine learning for algorithm design
 - > Learning-theoretic foundations
 - ➢ GJ algorithm framework
- Tuning core ML algorithms
 - Decision Trees
 - Neural networks
- Other aspects, ongoing and future research

Semi-supervised learning

[Chapelle, Scholkopf and Zien, 2006] [Zhu and Goldberg, 2009]

Three main ways to learn from data:

- positive (true label)
- negative (true label) red/blue: observed label

cheaper, but can be less accurate and/or less trustable

Data-driven semi-supervised learning [Oral (55/9122, top 0.6%) at NeurIPS'2021; joint work with Nina Balcan]

★ Repeated problems e.g. emails on an email server, spam vs. non-spam

- data: multiple partially labeled data sets from the same domain
- desiderata: efficiency (labels, samples, computational)

C Use feature similarity of unlabeled examples

Use a graph to account for global and local patterns in similarity

Add (stronger) edges between similar examples

Run a graph partitioning algorithm, assign appropriate labels to the pieces

C Use feature similarity of unlabeled examples

Use a graph to account for global and local patterns in similarity

Add (stronger) edges between similar examples

Run a graph partitioning algorithm, assign appropriate labels to the pieces

Add (stronger) edges between similar examples

Typical setup: Given a distance metric d(u,v),

Set graph edges based on d(u,v):

- Threshold (unweighted): add an edge if d(u,v) < r
- Exponential kernel: $w(u,v) = \exp(-d(u,v)^2/\sigma^2)$

r, *o* are hyperparameters

Run a graph partitioning algorithm, assign appropriate labels to the pieces

s,t min-cut [Blum and Chawla, 2001]

Run a graph partitioning algorithm, assign appropriate labels to the pieces

s,t min-cut [Blum and Chawla, 2001]

• Connect a single node (with infinite weight) to all nodes with the same label

Run a graph partitioning algorithm, assign appropriate labels to the pieces

s,t min-cut [Blum and Chawla, 2001]

- Connect a single node (with infinite weight) to all nodes with the same label
- Compute the graph min-cut separating these new nodes

Run a graph partitioning algorithm, assign appropriate labels to the pieces

soft Mincut [Zhu, Lafferty and Ghahramani, 2003]

 $L(f, G) = \sum_{u,v} w(u,v)(f(u) - f(v))^{2}$ $\operatorname{argmin}_{f} l(f) = L(f, G)$

 $f(u) \in \{0,1\}$ (hard labels, min-cut)

or $f(u) \in [0,1]$ (soft labels, harmonic objective)

Model

Model – the labeling algorithm

[Blum&Chawla 2001] [Zhu et al. 2003] [Zhou et al. 2004]

. . .

... [Wang et al. 2016] [Avrachenkov et al. 2017] [Liao et al. 2018]

Applied papers manually select $r_{,\sigma}$. [Balcan et al. ICML 2005]

Heuristics

- Select r^* = smallest r that connects the graph
- Select $\sigma = r^*/3$ [Zhu 2005]

Recall: Threshold graph $G(\mathbf{r})$ $w(\mathbf{u},\mathbf{v}) = \mathbf{I}[\mathbf{d}(\mathbf{u},\mathbf{v}) < \mathbf{r}]$ Gaussian $G(\boldsymbol{\sigma})$ $w(\mathbf{u},\mathbf{v}) = \exp(-\mathbf{d}(\mathbf{u},\mathbf{v})^2/\boldsymbol{\sigma}^2)$

Applied papers manually select $r_{,\sigma}$. [Balcan et al. ICML 2005]

Heuristics

- Select r^* = smallest r that connects the graph
- Select $\sigma = r^*/3$ [Zhu 2005]

Recall: Threshold graph $G(\mathbf{r})$ $w(\mathbf{u},\mathbf{v}) = \mathbf{I}[\mathbf{d}(\mathbf{u},\mathbf{v}) < \mathbf{r}]$ Gaussian $G(\boldsymbol{\sigma})$ $w(\mathbf{u},\mathbf{v}) = \exp(-\mathbf{d}(\mathbf{u},\mathbf{v})^2/\boldsymbol{\sigma}^2)$

Applied papers manually select $r_{,\sigma}$. [Balcan et al. ICML 2005]

Heuristics

- Select r^* = smallest r that connects the graph
- Select $\sigma = r^*/3$ [Zhu 2005]

Recall: Threshold graph $G(\mathbf{r})$ $w(\mathbf{u},\mathbf{v}) = \mathbf{I}[\mathbf{d}(\mathbf{u},\mathbf{v}) < \mathbf{r}]$ Gaussian $G(\boldsymbol{\sigma})$ $w(\mathbf{u},\mathbf{v}) = \exp(-\mathbf{d}(\mathbf{u},\mathbf{v})^2/\boldsymbol{\sigma}^2)$

Model – the labeling algorithm

Graph construction is "more of an art, than science" [Zhu 2005]

Currently, graph construction "is more of an art than science" [Alexandrescu, Kirchhoff 2007]

Remains "more of an art, than science" [Subramanya, Bilmes 2009] [Ozaki et al. 2011] [Eriguchi, Kobayashi 2014] ... [Domingue et al. 2019]

Pseudo-dimension bounds and generalization

Tight upper and lower bounds!

Result: Pseudo-dimension of threshold-based family $G(\mathbf{r})$ is $\Theta(\log n)$.

Result: Pseudo-dimension of Gaussian kernel family $G(\sigma)$ is $\Theta(n)$.

Model – online learning

Online learning: Given a sequence of problems, for each problem

- Select a graph $G(\sigma)$ (by choosing σ)
- Label a partially labeled problem instance using labeling algorithm A
- All true labels are revealed, we suffer loss $l(\sigma)$ for mislabeled examples

A key challenge

 $l(\sigma)$ is piecewise constant, can we still optimize?

Worst case: NO!

But real world data is usually not worst case ...

A key challenge

 $l(\sigma)$ is piecewise constant, can we still optimize?

Yes, provided discontinuities (over time) do not concentrate in any interval.

When can we learn the graph?

 $l(\sigma)$ is piecewise constant, can we still optimize?

Yes, provided discontinuities (over time) do not concentrate in any interval.

Dispersion: If in any interval I of width $\varepsilon \ge 1/\sqrt{T}$, few discontinuities (in expectation).

 $E[max_{I}(\# discontinuities in I)] = O(\epsilon T)$ [Balcan, Dick, Vitercik, FOCS 2018]

Many boundaries within interval

Few boundaries within interval

Theorem: There exists an algorithm with $O(1/\sqrt{T})$ expected average regret provided distance metric d(u,v) is "**smooth**".

i.e. d(u,v) is distributed with κ -bounded density.

```
Regret(Alg. E) =
```

Loss suffered by
your graphsLoss of best \vec{G}
(in hindsight)

Theorem: Algorithm E enjoys $O(1/\sqrt{T})$ expected average regret provided distance metric d(u,v) is "smooth".

i.e. d(u,v) is distributed with κ -bounded density.

```
Avg. Regret(Alg. E) =
```


Theorem: Algorithm E enjoys $O(1/\sqrt{T})$ expected average regret provided distance metric d(u,v) is "smooth".

i.e. d(u,v) is distributed with κ -bounded density.

Theorem: Algorithm E enjoys $O(1/\sqrt{T})$ expected average regret provided distance metric d(u,v) is "smooth".

i.e. d(u,v) is distributed with κ -bounded density.

```
κ-bounded
e.g. N(µ, σ^2)
⇒
dispersion!
```

Theorem: Algorithm E enjoys $O(1/\sqrt{T})$ expected average regret provided distance metric d(u,v) is "**smooth**".

i.e. d(u,v) is distributed with κ -bounded density.

⇒ We (almost) learn the best possible graph; gap decreases with T

Speeding up the algorithm...

Challenge: Large number of pieces!!

Solution: Just compute one piece – "feedback set" – in each round! [Balcan, Dick, Pegden 2020]

- 1. Can be implemented in poly(n) time.
- 2. Can still achieve $O(1/\sqrt{T})$ expected average regret!!

Learning multi-parameter graphs

Multi-modal data – even more challenging to annotate!

Audio-visual Speech Recognition

d₁ **metric**: audio signals

d₂ metric: lip movement

 $d(u,v) = \sum_i \alpha_i d_i(u,v)$

Lots of applications: Image captioning; video description; AVSR
Learning multi-parameter graphs (algorithms)

Challenge: Discontinuities lie along complex hypersurfaces (in parameter space)

P(x,y,z) = 0, P polynomial in x,y and z e.g. $x^2+y^2+yz=0$

Our results:

- $O(1/\sqrt{T})$ expected average regret!
- general results beyond semi-supervised learning
- tools from algebraic geometry

[Tarski-Seidenberg theorem]

Real-world datasets

• Classifying handwritten digits, handwritten letters, pictures...

d(u,v) = Euclidean distance b/w pixel vectors

4 L β δ L μακχν υθγίσ ωπηοε ΡξζΨ

MNIST

Omniglot

CIFAR-10

Real-world datasets (single problem instance)

Randomly drawn problem instances

Variation in optimal parameters!

Randomly drawn problem instances

Our algorithm obtains low regret!

(as good as optimal graph)

Other aspects of online learning

Handling distribution shifts via shifting regret [Balcan, Dick, Sharma (AISTATS 2020)]

```
Avg. Regret(Alg. E) =Usual<br/>"static"<br/>regret1/T \begin{pmatrix} Loss suffered by \\ E in T rounds \end{pmatrix} - Loss of best G<br/>(in hindsight) \end{pmatrix}"shifting"<br/>regretAvg. Regret(Alg. E) ="shifting"<br/>regret1/T \begin{pmatrix} Loss suffered by \\ E in T rounds \end{pmatrix} - Loss of best sequence G_{1'}<br/>G_{2'} ..., G_k (up to k shifts) \end{pmatrix}
```

Other aspects of online learning

Handling multiple tasks [Balcan, Khodak, Sharma, Talwalkar (NeurIPS 2021)]

```
Avg. Regret(Alg. E) =Usual<br/>"single-task"<br/>regret1/T \begin{pmatrix} Loss suffered by \\ E in T rounds \end{pmatrix} - Loss of best G<br/>(in hindsight) \end{pmatrix}1/T \begin{pmatrix} Task \\ Avg. Regret(Alg. E) = \\ Average<br/>"multi-task"<br/>regret<math>1/m \begin{pmatrix} 1/T \begin{pmatrix} Loss suffered by \\ E in T rounds \end{pmatrix} - Loss of best G_i<br/>(for task i) \end{pmatrix}
```

Open questions and research directions

- Other applications to tuning important hyperparameters and algorithms
- Focus on statistical complexity —— computationally efficient methods?
- Making currently used approaches in practice more structure-aware
- Beyond the worst-case complexity: distribution-dependent bounds
 e.g. [Balcan, Goyal, Sharma (2025)]
- More challenging high-dimensional and distributed settings
 - E.g. extend our model hyperparameter tuning result to multiple hyperparameters

[1] Bergstra, James, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. "Algorithms for hyper-parameter optimization." Advances in neural information processing systems 24 (2011).

[2] Feurer, Matthias, and Frank Hutter. *Hyperparameter optimization*. Springer International Publishing, 2019.

[3] Bischl, Bernd, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas et al. "Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges." *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery* 13, no. 2 (2023): e1484.

[4] Franceschi, Luca, Michele Donini, Valerio Perrone, Aaron Klein, Cédric Archambeau, Matthias Seeger, Massimiliano Pontil, and Paolo Frasconi. "Hyperparameter Optimization in Machine Learning." *arXiv preprint arXiv:2410.22854* (2024).

[5] Mockus, Jonas. "The Bayesian approach to local optimization." In *Bayesian approach to global optimization: Theory and applications*, pp. 125-156. Dordrecht: Springer Netherlands, 1989.

[6] Srinivas, Niranjan, Andreas Krause, Sham Kakade, and Matthias Seeger. "Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design." In *Proceedings of the 27th International Conference on Machine Learning*, pp. 1015-1022. Omnipress, 2010.

[7] Frazier, Peter I. "A tutorial on Bayesian optimization." arXiv preprint arXiv:1807.02811 (2018).

[8] Maclaurin, Dougal, David Duvenaud, and Ryan Adams. "Gradient-based hyperparameter optimization through reversible learning." In *International conference on machine learning*, pp. 2113-2122. PMLR, 2015.

[9] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." In *International conference on machine learning*, pp. 1126-1135. PMLR, 2017.

[10] Franceschi, Luca, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. "Bilevel programming for hyperparameter optimization and meta-learning." In International conference on machine learning, pp. 1568-1577. PMLR, 2018.

[11] Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. "Hyperband: A novel bandit-based approach to hyperparameter optimization." *Journal of Machine Learning Research* 18, no. 185 (2018): 1-52.

[12] Falkner, Stefan, Aaron Klein, and Frank Hutter. "BOHB: Robust and efficient hyperparameter optimization at scale." In *International conference on machine learning*, pp. 1437-1446. PMLR, 2018.

[13] Parker-Holder, Jack, Vu Nguyen, and Stephen J. Roberts. "Provably efficient online hyperparameter optimization with population-based bandits." *Advances in neural information processing systems* 33 (2020): 17200-17211.

[14] Gupta, Rishi, and Tim Roughgarden. "A PAC approach to application-specific algorithm selection." In *Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science*, pp. 123-134. 2016.

[15] Maria-Florina Balcan. Data-Driven Algorithm Design. In Tim Roughgarden, editor, Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press, 2020.

[16] Linial, Nathan, Yishay Mansour, and Noam Nisan. "Constant depth circuits, Fourier transform, and learnability." Journal of the ACM (JACM) (1993).

[17] Balcan, Maria-Florina, and Dravyansh Sharma. "Learning Accurate and Interpretable Decision Trees." In *Uncertainty in Artificial Intelligence*, pp. 288-307. PMLR, 2024. Extended version "Learning Accurate and Interpretable Tree-based Models" arXiv preprint arXiv:2405.15911.

[18] Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "DARTS: Differentiable Architecture Search." In *International Conference on Learning Representations*, 2019.

[19] Balcan, Maria-Florina, Anh Tuan Nguyen, and Dravyansh Sharma. "Sample complexity of data-driven tuning of model hyperparameters in neural networks with structured parameter-dependent dual function." *arXiv preprint arXiv:2501.13734* (2025).

[20] Balcan, Maria-Florina, Travis Dick, and Manuel Lang. "Learning to Link." In International Conference on Learning Representation. 2020.

[21] Balcan, Maria-Florina, Misha Khodak, Dravyansh Sharma, and Ameet Talwalkar. "Provably tuning the ElasticNet across instances." Advances in Neural Information Processing Systems 35 (2022): 27769-27782.

[22] Balcan, Maria-Florina, and Dravyansh Sharma. "Data driven semi-supervised learning." NeurIPS (2021): 14782-14794.

[23] Balcan, Maria-Florina, Travis Dick, and Ellen Vitercik. "Dispersion for data-driven algorithm design, online learning, and private optimization." In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 603-614. IEEE, 2018.

[24] Balcan, Maria-Florina, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen Vitercik. "How much data is sufficient to learn high-performing algorithms? Generalization guarantees for data-driven algorithm design." *Symposium on Theory of Computing (STOC)*, 2021.

[25] Balcan, Maria-Florina, Anh Tuan Nguyen, and Dravyansh Sharma. "Algorithm Configuration for Structured Pfaffian Settings." TMLR (2025).

[26] Koch, Caleb, Carmen Strassle, and Li-Yang Tan. "Properly learning decision trees with queries is NP-hard." In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pp. 2383-2407. IEEE, 2023.

[27] Lin, Jimmy, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. "Generalized and scalable optimal sparse decision trees." In *International conference on machine learning*, pp. 6150-6160. PMLR, 2020.

[28] Balcan, Maria-Florina, Saumya Goyal, and Dravyansh Sharma. "Distribution-dependent Generalization Bounds for Tuning Linear Regression Across Tasks." *arXiv preprint arXiv:2507.05084* (2025).

[29] Balcan, Maria-Florina, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. "Learning-to-learn non-convex piecewise-Lipschitz functions." *Advances in Neural Information Processing Systems* 34 (2021): 15056-15069.

[30] Balcan, Maria-Florina, Anh Nguyen, and Dravyansh Sharma. "New bounds for hyperparameter tuning of regression problems across instances." *Advances in Neural Information Processing Systems* 36 (2023): 80066-80078.

[31] Balcan, Maria-Florina, Christopher Seiler, and Dravyansh Sharma. "Accelerating ERM for data-driven algorithm design using output-sensitive techniques." *Advances in Neural Information Processing Systems* 37 (2024): 72648-72687.

[32] Sharma, Dravyansh, and Maxwell Jones. "Efficiently learning the graph for semi-supervised learning." In Uncertainty in Artificial Intelligence, 2023.

[33] Sharma, Dravyansh. "Data-driven algorithm design and principled hyperparameter tuning in machine learning." PhD dissertation, CMU (2024).

[34] Sharma, Dravyansh, and Arun Suggala. "Offline-to-online hyperparameter transfer for stochastic bandits." In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 39, no. 19, pp. 20362-20370. 2025.

[35] Balcan, Maria-Florina, Avrim Blum, Dravyansh Sharma, and Hongyang Zhang. "An analysis of robustness of non-lipschitz networks." *Journal of Machine Learning Research* 24, no. 98 (2023): 1-43.

[36] Sharma, Dravyansh, Maria-Florina Balcan, and Travis Dick. "Learning piecewise Lipschitz functions in changing environments." In *International Conference on Artificial Intelligence and Statistics*, pp. 3567-3577. PMLR, 2020.

[37] Hazan, Elad, Adam Klivans, and Yang Yuan. "Hyperparameter Optimization: A Spectral Approach." ICLR (2018).

[38] Bartlett, Peter, Piotr Indyk, and Tal Wagner. "Generalization bounds for data-driven numerical linear algebra." In Conference on Learning Theory, pp. 2013-2040. PMLR, 2022.