
Principled Hyperparameter
Optimization and Algorithm Selection

Practical Techniques, Theory, and New Frontiers

Uncertainty in Artificial Intelligence
Jul 21, 2025

Rio de Janeiro

Dravyansh (Dravy) Sharma
IDEAL Postdoctoral Researcher

(joint TTIC+Northwestern)

Tutorial 1

❖ Algorithm design for machine learning (aka HP tuning)
❖ Current approaches in practice

➢ Bayesian Optimization, Gradient-based and Bandit-based methods
❖ Machine learning for algorithm design

➢ Learning-theoretic foundations
➢ GJ algorithm framework

❖ Tuning core ML algorithms
➢ Decision Trees
➢ Neural networks

❖ Other aspects, ongoing and future research

2

Roadmap

❖ Algorithm design for machine learning (aka HP tuning)
❖ Current approaches in practice

➢ Bayesian Optimization, Gradient-based and Bandit-based methods
❖ Machine learning for algorithm design

➢ Learning-theoretic foundations
➢ GJ algorithm framework

❖ Tuning core ML algorithms
➢ Decision Trees
➢ Neural networks

❖ Other aspects, ongoing and future research

3

Roadmap

HP tuning is a special case of algorithm selection in Machine Learning

4

What is a hyperparameter?

Why so common in ML? Hard problems + role of data

HP tuning is important across ML

● Data prep + HP tuning take up most of the applied ML researcher hours
● Takes up to 90% of the compute
● Critical in high-stakes and large-scale applications

5

Hyperparameter tuning and transfer

HP transfer is crucial today!

● Unavoidable in LLMs where each of the above is magnified multifold!

Algorithm design for machine learning

● Hyperparameter tuning is poorly understood and yet of critical importance
○ why? ML works on data

6

Data Predictions

Machine learning

● Current practices require incredible amounts of compute and engineering efforts, and
yet with no guarantees!

● Understanding how the performance actually varies with the hyperparameter is crucial for
principled tuning

○ There is NO single best algorithm+hyperparameter!
○ Must tune/configure for the best performance on domain-specific data

❖ Algorithm design for machine learning (aka HP tuning)
❖ Current approaches in practice

➢ Bayesian Optimization, Gradient-based and Bandit-based methods
❖ Machine learning for algorithm design

➢ Learning-theoretic foundations
➢ GJ algorithm framework

❖ Tuning core ML algorithms
➢ Decision Trees
➢ Neural networks

❖ Other aspects, ongoing and future research

7

Roadmap

Existing approaches and their (theoretical) limitations

● Manual tuning, grid search, random search:

○ inefficient
○ unprincipled
○ no transfer across tasks
○ data-independent grids can be highly suboptimal

[Balcan et al. BNVW (COLT’17), BDDKSV (JACM’24)]

Gap: Limited theoretical understanding,
no guarantees for tuning continuous hyperparameters,
typically no transfer across tasks

8

● State-of-the-art:
○ Bayesian Optimization (BO);

[e.g. Snoek et al. 2012]
○ Gradient-based;
○ Bandit-based

But how does the model performance depend on its hyperparameters?

● Short answer: we don’t really understand it!

9

● BO works with a crude approximation: Noisy evaluation
of function with certain smoothness properties?

○ But how do we know what are the right
smoothness priors?

○ Assumptions needed on noise correlations
(kernel function)

○ How to search? (acquisition fns)

● But what is the actual dependence? Even on a fixed
data instance?

10

Bayesian Optimization

● Gaussian Process:
○ a collection of (infinitely many) random variables that are jointly Gaussian.
○ a distribution over functions – models noisy evaluation of some f(x).
○ given by a mean function m(x) and covariance k(x, x’).

E[f(x)] = m(x).
E[(f(x) – m(x))(f(x’) – m(x’))] = k(x, x’).

● Since all finite collections of function values are assumed
jointly Gaussian, the conditional distribution of any new
point given the observed points is also Gaussian,
i.e. distribution of mean and variance at x*, given observed
points X is

µ(x*) = K(x*, X)K(X, X)–1f(X).
σ2(x*) = K(x*, x*) – K(x*, X)K(X, X)–1K(X, x*).

µ(x*)

 x*

σ2(x*)

X = [x1, x2, x3, x4, x5]

11

Bayesian Optimization

[Timothy Wolodzko github]

[A Tutorial on Bayesian Optimization, Frazier 2018]

12

BO has its own hyperparameters!

Exception [Berkenkamp, Schoellig, Krause JMLR 2019] But
very slow convergence!

13

Gradient-based approaches

● Gradient descent (and other gradient-based iterative optimization):
○ fundamental algorithm used across deep learning
○ typically used to train the model parameters e.g. neural network weights
○ gradient of loss w.r.t. parameters computed using chain-rule (aka

back-propagation or Reverse-Mode Differentiation) [E.g. LeCun et al. (1989)]

● Stochastic gradient descent
○ computes gradient of “one datapoint” at a time

● “Stochastic hypergradient descent”
○ gradient of “validation-loss” w.r.t. hyperparameter
○ Usual too slow, but there are computational tricks

[Bengio (2000), Baydin & Pearlmutter (2014), Maclaurin et al. (2015)]

14

Gradient-based approaches

● “Stochastic hypergradient descent”
○ gradient of “validation-loss” w.r.t. hyperparameter
○ Usual too slow, but there are computational tricks

● Extension to multiple tasks (meta-learning)
○ MAML (Model-Agnostic Meta-Learning)

○ Online Meta-Learning [Khodak et al. (2019)]

● Unification [HPO + Meta-learning] [Franceschi et al. (2018)]
[Maclaurin et al. (2015)]

[Finn et al. (2017)]

Essentially bandit problems with additional HP-specific assumptions

1. Hyperband: Each arm has a noisy non-stationary reward that eventually
converges to a limiting value [Li, Jamieson, DeSalvo, Rostamizadeh, & Talwalkar (JMLR 2018)]

15

Bandit-based approaches

Essentially bandits problems with additional HP-specific assumptions

2. Rising/improving bandits: Arms have concave “learning curves”

[Heidari, Kearns, Roth (IJCAI 2016), Li et al. (AAAI 2020), Metelli et al. (ICML 2022), Mussi et al. (ICML 2024),
Blum and Ravichandran (ALT 2025)]

16

Bandit-based approaches

Known guarantees (and lack thereof)

Bayesian optimization

– Guarantees typically need strong prior assumptions

– Need design of kernels (with hyperparameters) and acquisition functions

Gradient-based methods

– Global optimality typically needs unrealistic convexity/smoothness assumptions

Bandit-based methods

– Guarantees typically only over a finite subset of hyperparameter values (arms)
17

Guarantees e.g. for GP-UCB assume you can magically do this!

All approaches are black-box!!
(agnostic to structure)

[Srinivas, Krause, Kakade, Seegar (2010)]

Hyperparameter tuning and its challenges

● Deep Learning: is powerful, “automated”, and
has revolutionized machine learning …

but a major bottleneck for true automation:
need for extensive hyperparameter tuning!

● Tedious engineering effort + expensive
computational resources

● Typical approaches have limited theoretical
guarantees and completely black-box!

18

Truly automatic,
provably good!

$$$
manual tuning,

or
poor heuristics

❖ Algorithm design for machine learning (aka HP tuning)
❖ Current approaches in practice

➢ Bayesian Optimization, Gradient-based and Bandit-based methods
❖ Machine learning for algorithm design

➢ Learning-theoretic foundations
➢ GJ algorithm framework

❖ Tuning core ML algorithms
➢ Decision Trees
➢ Neural networks

❖ Other aspects, ongoing and future research

19

Roadmap

★ Algorithm families occur frequently in machine learning
○ Often as tunable “hyperparameters”
○ One could smoothly “interpolate” good heuristics

Interpolate: elastic net (best of both worlds!)

Regularized linear regression

(handles overparameterization,
multicollinearity well)

(sparse)

[Gupta and Roughgarden, 2016] [Balcan, 2020]
[Sharma, 2024]

20

Data-driven algorithm design

★ Repeated problems from the same problem domain
○ Expected with regular use of ML
○ May come randomly (optimistic) or in an adversarial sequence (pessimistic)

21

Data-driven algorithm design [GR16, Bal20, Sha24]

★ Technical challenges:
○ Algorithms form an interesting “concept space”
○ Sharp transition boundaries in optimization objective
○ Particularly tricky to handle multiple “hyperparameters”

22

Data-driven algorithm design [GR16, Bal20, Sha24]

Data-driven algorithm design [GR16, Bal20, Sha24]

● Concretely:

○ x is a problem instance from a problem set X, our (infinite) algorithm family A

○ D is a problem distribution over X , representing the application-specific domain

○ We also study no-regret online learning, where instances arrive in a sequence

● Instead of tuning for one specific problem, we tune the hyperparameter that generalizes
across a collection of related problems.

● E.g., academic email spam filter for Gmail, or electronic products sold on Amazon

23

★ Repeated problems e.g. emails on an email server, spam vs. non-spam

Day 1 Day 2 Day 3

[Balcan and Sharma (2021)];
Oral (55/9122, top 0.6%) at NeurIPS’2021

24

Goal: learn how to connect points using a graph s.t. a (soft) min-cut yields accurate predictions

○ statistical learning: tight upper+lower bounds on learning-theoretic complexity
○ online learning: primal-dual style algorithms achieve no regret, under mild

assumptions

Example: Semi-Supervised Learning

Tuning different aspects of decision tree learning

- Splitting criterion (which node to split when building the tree?)
- A novel algorithmic family which unifies entropy, Gini impurity and

Kearns-Mansour criterion
- Sample complexity of selecting best splitting algorithm

- Bayesian methods (Parameters to select initial tree skeleton)
- Pruning (Deleting nodes to avoid overfitting)
- Interpretability (Adding tree size to cost with tunable parameter)

25

Example: Decision Trees [Balcan and Sharma, UAI 2024 Outstanding Student Paper Award]

❖ Algorithm design for machine learning (aka HP tuning)
❖ Current approaches in practice

➢ Bayesian Optimization, Gradient-based and Bandit-based methods
❖ Machine learning for algorithm design

➢ Learning-theoretic foundations
➢ GJ algorithm framework

❖ Tuning core ML algorithms
➢ Decision Trees
➢ Neural networks

❖ Other aspects, ongoing and future research

26

Roadmap

Primal and dual utility functions

● Utility (performance) on any instance for any hyperparameter are given by a function:

u(x, α) : X x A → [0, H]

● Denote input instance space X and Hyperparameter space A

● Primal utility function class:
U = {uα : X → [0, H] | α ∈ A}

● Dual utility function class:
U* = {u*x : A → [0, H] | x ∈ X }

27

● Complexity measure: pseudo-dimension, Pdim(U)

○ The maximum size n such that U can “shatter” {x1, … , xn}, using thresholds t1, … , tn ∈ ℝ

○ by “shattering”, we mean

Statistical learning theory: sample complexity and pseudo-dimension

28

Given ε > 0 and 0 < δ < 1, what is the sample complexity m(ε, δ)?

● Standard PAC-Learning approach: bound the learning-theoretic complexity of U

U = {uα : X → [0, H] | α ∈ A}

|{sign(uα(x1) – t1), …, sign(uα(xn) – tn)| uα ∈ U}| = 2n

● Classical learning theory: If Pdim(U) is finite, then m(ε, δ) = O(H/ε2(Pdim(U) + log 1/δ))

Analogue of VC dimension for real-valued functions

Statistical learning theory: sample complexity and pseudo-dimension

29

● Simple examples to illustrate pseudo-dimension

Straight lines in 2D, functions fa, b, c(x, y) = ax + by + c for real a, b, c.

F = {fa, b, c}. Pdim(F) = ?

Answer: 3

Primal and dual utility functions

● But the structure of U is too complex!
● On the otherwise, it is often easier to establish the structure of the dual class U*.

● So we want to bound the pseudo-dimension of the primal function class U.

● A general tool (for bounding Pdim of primal using dual structure):

30

Theorem [BDDKSV STOC’21]: Suppose the dual function class has a piecewise-structure with k
boundary functions coming from some function class F*, and piece functions from class G*. Then,
Pdim(U) = O((VCdim(F*) + Pdim(G*))log k).~

31

Example: Linkage Clustering [BNVW COLT’17, BSS NeurIPS’24]

Example application: Linkage or hierarchical clustering.

Given a collection of n objects, organize them into hierarchy
e.g. “categories” of news articles

ALL news categories

WORLD
EVENTS TECHNOLOGY SPORTS

Asia Europe
South

America
American
Football

Football

PeruBrazil

32

Example: Linkage Clustering [BNVW COLT’17, BSS NeurIPS’24]

Example application: Linkage or hierarchical clustering.
Algorithm:
1. Start with each object as its own cluster.
2. Repeatedly merge “most similar” clusters.

ALL news categories

WORLD
EVENTS TECHNOLOGY SPORTS

Asia Europe
South

America
American
Football

Football

PeruBrazil

33

Example: Linkage Clustering [BNVW COLT’17, BSS NeurIPS’24]

Example application: Linkage or hierarchical clustering.
Algorithm:
1. Start with each object as its own cluster.
2. Repeatedly merge “most similar” clusters.

But what is “most similar”? Define a notion of distance between cluster pairs:

Single linkage: Dmin(A, B) = mina ∈ A, b ∈ B d(a, b)
Complete linkage: Dmax(A, B) = maxa ∈ A, b ∈ B d(a, b)

Interpolate linkage: Dα(A, B) = αDmin(A, B) + (1 – α)Dmax(A, B)

How to tune α?

Piecewise constant structure with poly(n) pieces ⇒ Pdim(U) = O(log n)

Combined Algorithm and Hyperparameter Selection [A general tool]

What if we have multiple algorithms each with its own hyperparameters?

Algorithms: A1, A2, … , Ak
Utility function classes (resp. Hyperparameters): U1, U2, … , Uk

What is the sample complexity of algo+hyperparameter selection?

Theorem: Sample complexity of CASH is O(H2/ε2(log k + maxi Pdim(Ui))).
[Balcan and Sharma, Arxiv’25]

❖ Algorithm design for machine learning (aka HP tuning)
❖ Current approaches in practice

➢ Bayesian Optimization, Gradient-based and Bandit-based methods
❖ Machine learning for algorithm design

➢ Learning-theoretic foundations
➢ GJ algorithm framework

❖ Tuning core ML algorithms
➢ Decision Trees
➢ Neural networks

❖ Other aspects, ongoing and future research

35

Roadmap

36

Goldberg-Jerrum (’95) Framework

Another general useful technique for bounding the pseudo-dimension of function
classes based on algorithms with real parameters that perform arithmetic
operations.

 – Original results yield Pdim bounds in terms of the running time of the algorithm.

 – The corresponding bounds are sub-optimal for data-driven algorithm design.

Recent works provide refined GJ frameworks for data-driven algorithm design.

 [Bartlett, Indyk, Wagner, COLT’22], [Balcan, Nguyen, Sharma, TMLR’25]

37

Refined GJ Framework [Bartlett, Indyk, Wagner, COLT’22]

Takes in:

n real
algorithm
parameters

Two types of operations:

(1) Arithmetic (binary): +, –, ⨉, ÷

(1) Conditional: if .. then .. else ..

GJ (95) Algorithm
Output(s): E.g.

Cluster,

Matrix,

Regression fit, etc.

Note: All expressions
computed by the GJ algorithm
are rational functions (ratios of

polynomials) of its inputs

38

Refined GJ Framework [Bartlett, Indyk, Wagner, COLT’22]

Takes in:

n real
algorithm
parameters

Two types of operations:

(1) Arithmetic (binary): +, –, ⨉, ÷

(1) Conditional: if .. then .. else ..

GJ (95) Algorithm
Output(s): E.g.

Cluster,

Matrix,

Regression fit, etc.

Theorem: Suppose the algorithm family has n real parameters. Also, for any problem instance x
and real threshold r, there is a GJ algorithm Γx,r that determines whether uα(x) ≥ r by evaluating
at most Π distinct predicates (rational expressions) with maximum degree Δ. Then,

Pdim(U) = O(n log(ΔΠ)).

39

Refined GJ Framework [Bartlett, Indyk, Wagner, COLT’22]

if

if

then else

if

if
then else

True False

Π : # distinct expressions

Δ : max degree of all p’s
and q’s

Theorem: Suppose the algorithm family has n real parameters. Also, for any problem instance x
and real threshold r, there is a GJ algorithm Γx,r that determines whether uα(x) ≥ r by evaluating
at most Π distinct predicates (rational expressions) with maximum degree Δ. Then,

Pdim(U) = O(n log(ΔΠ)).

Γx,r

40

Refined GJ Framework [Balcan, Goyal, Sharma, Arxiv’25]

Theorem: Sample complexity of tuning λ is O(log(d)/ε2).

Example application: Tuning the ridge penalty λ in linear regression.

Input: Training data X, y and validation data X’, y’.
Goal: Tune λ to minimize validation loss.

Applying GJ framework: Note that the ridge solution is

⇒ Validation loss is a rational function with degree at most 2d.
⇒ GJ algorithm to check uλ(x) ≥ r has degree 2d and predicate complexity 1.

Lemma: is a rational function of lambda with degree at most d (#features).

minw ||Xw – y||2 + λ||w||2

wλ = (XTX + λI)–1XTy.

wλ = (XTX + λI)–1XTy

41

Refined GJ Framework [Bartlett, Indyk, Wagner, COLT’22]

Theorem: Sample complexity of tuning IVY is O(mn/ε2).

Example application: Low-rank approximation.

Input: Given a sparse matrix with , target rank k < n.
Goal: Sparse matrix with rank k that minimizes (approximates A well).

Exact algorithm based on SVD (singular value decomposition) is inefficient!
Faster algorithm IVY [Indyk, Vakilian, Yuan ’19] is family of parameterized heuristics
uses a m x n auxiliary matrix (runtime nearly linear in #non-zero entries!).

42

Pfaffian functions

Pfaffian function chain: A sequence of multivariate functions with
arguments , if all partial derivatives can be expressed via polynomials
of the arguments or previous functions in the chain, i.e.

Pfaffian function: Polynomial fn of the Pfaffian chain

Chain length, q: number of functions in the sequence

Pfaffian degree, M: Maximum degree of a derivative polynomials

Degree, Δ: Maximum degree of a polynomial of a chain of Pfaffian functions, Q

43

Pfaffian functions

Examples:

1. : Chain length ? Pfaffian degree ? degree ?

 2. : Chain length ? Pfaffian degree ? degree ?

 3. a1/2 + a2/3 : Chain length ? Pfaffian degree ? degree ?

44

Pfaffian functions

Pfaffian function chain: A sequence of multivariate functions with
arguments , if all partial derivatives can be expressed via polynomials
of the arguments or previous functions in the chain, i.e.

Pfaffian function: Polynomial fn of the Pfaffian chain

Chain length, q: number of functions in the sequence

Pfaffian degree, M: Maximum degree of a derivative polynomials

Degree, Δ: Maximum degree of a polynomial of a chain of Pfaffian functions, Q

1. : Chain length ? Pfaffian degree ? degree ?

45

Pfaffian functions

1. : Chain length ? Pfaffian degree ? degree ?

f1(a) = e2a + a3 ; f1’(a) = 2e2a + 3a2 = 2f1(a) + 3a2 = P(a, f1(a)) ; Q(a, f1(a)) = f1(a)

Chain length = 1, Pfaffian degree = 2, degree = 1

f1(a) = ea ; f1’(a) = f1(a) = P(a, f1(a)) ; Q(a, f1(a)) = (f1(a))2 + a3

Chain length = 1, Pfaffian degree = 1, degree = 3

46

Pfaffian functions

Pfaffian function chain: A sequence of multivariate functions with
arguments , if all partial derivatives can be expressed via polynomials
of the arguments or previous functions in the chain, i.e.

Pfaffian function: Polynomial fn of the Pfaffian chain

Chain length, q: number of functions in the sequence

Pfaffian degree, M: Maximum degree of a derivative polynomials

Degree, Δ: Maximum degree of a polynomial of a chain of Pfaffian functions, Q

2. : Chain length ? Pfaffian degree ? degree ?

47

Pfaffian functions

2. : Chain length ? Pfaffian degree ? degree ?

f1(a) = log a ; f1’(a) = 1/a

Not a polynomial in log a and a!

f1(a) = 1/a ; f2(a) = log a;

f1’(a) = –a–2 = P(a, f1(a)) ; f1’(a) = 1/a = P(a, f1(a), f2(a)) ; Q(a, f1(a)) = ½ f2(a)

Chain length = 2, Pfaffian degree = 2, degree = 1

48

Pfaffian functions

Pfaffian function chain: A sequence of multivariate functions with
arguments , if all partial derivatives can be expressed via polynomials
of the arguments or previous functions in the chain, i.e.

Pfaffian function: Polynomial fn of the Pfaffian chain

Chain length, q: number of functions in the sequence

Pfaffian degree, M: Maximum degree of a derivative polynomials

Degree, Δ: Maximum degree of a polynomial of a chain of Pfaffian functions, Q

3. a1/2 + a2/3 : Chain length ? Pfaffian degree ? degree ?

49

Pfaffian GJ Framework [Balcan, Nguyen, Sharma (TMLR 2025)]

Takes in:

n real
algorithm
parameters

Three types of operations:

(1) Arithmetic (binary): +, –, ⨉, ÷

(1) Conditional: if .. then .. else ..

(1) Pfaffian function

Pfaffian GJ Algorithm
Output(s): E.g.

Cluster,

Matrix,

Regression fit, etc.

Theorem: Suppose the algorithm family has n real parameters. Also, for any problem instance x
and real threshold r, there is a Pfaffian GJ algorithm that determines whether
by evaluating Π distinct predicates with Pfaffian chain length q, degree Δ, and Pfaffian degree M.
Then,

50

Pfaffian GJ Framework Example: Linkage Clustering [BNS TMLR’25]

Algorithm:
1. Start with each object as its own cluster.
2. Repeatedly merge “most similar” clusters.

But what is “most similar”? Define a notion of distance between cluster pairs:

Single linkage: Dmin(A, B) = mina ∈ A, b ∈ B d(a, b)
Complete linkage: Dmax(A, B) = maxa ∈ A, b ∈ B d(a, b)

Also, what if we have multiple distances d1, d2, …, dL?

1. Interpolate distances: d𝛽 = 𝛽1d1 + 𝛽2d2 + … +𝛽LdL
2. Interpolate linkage: Dα,𝛽(A, B) = (mina ∈ A, b ∈ B (d𝛽(a, b))α + mina ∈ A, b ∈ B (d𝛽(a, b))
α)1/α

How to tune α, 𝛽?

51

Pfaffian GJ Framework Example: Linkage Clustering [BNS TMLR’25]

Algorithm:
1. Start with each object as its own cluster.
2. Repeatedly merge “most similar” clusters.

The algorithm uses exponents:
so arithmetic operations not enough to compute the clusters!

But Pfaffian GJ framework applies!

Dα,𝛽(A, B) = (mina ∈ A, b ∈ B (d𝛽(a, b))α + mina ∈ A, b ∈ B (d𝛽(a, b))α)1/α

Theorem: Sample complexity of tuning α, 𝛽 is O(n4L2/ε2).

52

Pfaffian GJ Framework Example: Linkage Clustering [BNS TMLR’25]

Algorithm:
1. Start with each object as its own cluster.
2. Repeatedly merge “most similar” clusters.

Merge decisions are governed by boundaries given by following inequation in α, 𝛽

for some clusters A, B, A’, B’

Dα,𝛽(A, B) = (mina ∈ A, b ∈ B (d𝛽(a, b))α + mina ∈ A, b ∈ B (d𝛽(a, b))α)1/α

Dα,𝛽(A, B) ≷ Dα,𝛽(A’, B’)

What are the
Pfaffian chains?

Equivalently, the boundaries are given by (at most n8 equations)

for some points a1, b1, a2, b2, a3, b3, a4, b4

(d𝛽(a1, b1))
α + (d𝛽(a2, b2))

α – (d𝛽(a3, b3))
α – (d𝛽(a4, b4))

α ≷ 0

53

Pfaffian GJ Framework Example: Linkage Clustering [BNS TMLR’25]

What are the
Pfaffian chains?

(d𝛽(a1, b1))
α + (d𝛽(a2, b2))

α – (d𝛽(a3, b3))
α – (d𝛽(a4, b4))

α ≷ 0

For each pair of points (a, b), define 3 functions

fa, b(𝛽) = 1/d𝛽(a, b) ;
ga, b(𝛽) = ln d𝛽(a, b) ;
ha, b(𝛽) = (d𝛽(a, b))α

Chain length < 3n2, degree 1, Pfaffian degree 2
Number of parameter = L + 1
Number of distinct predicates < n8

Our result implies Pdim(U) = O(n4L2)

❖ Algorithm design for machine learning (aka HP tuning)
❖ Current approaches in practice

➢ Bayesian Optimization, Gradient-based and Bandit-based methods
❖ Machine learning for algorithm design

➢ Learning-theoretic foundations
➢ GJ algorithm framework

❖ Tuning core ML algorithms
➢ Decision Trees
➢ Neural networks

❖ Other aspects, ongoing and future research

54

Roadmap

Low-rank approximation [Bartlett, Indyk, Wagner, COLT 2022]

Regularizing linear (Elastic Net) and logistic regression [BKST NeurIPS 2022, BNS NeurIPS
2023, BGS 2025]

Simulated Annealing [Blum, Dan, Seddighin, AISTATS 2021]

Learning to branch and cut [Balcan, Dick, Sandholm, Vitercik, ICML 2018, JACM 2024]

Clustering (both k-center and hierarchical) [BNVW COLT 2017, BDW NeurIPS 2018, BDL ICLR 2020]

Gradient descent [Gupta and Roughgarden, ITCS 2016]

Integer and Linear Programming [Balcan et al., Khodak et al., Cheng and Basu, Sakaue and Oki (2024)]

55

Applications [ML, stats, optimization]

Knapsack, Maximum Weighted Independent Set [Gupta and Roughgarden, ITCS 2016, Balcan et
al., FOCS 2018]

Max cut, Max 2-SAT [Balcan et al., COLT 2017]

Dynamic Programming, Sequence Alignment [Balcan et al., COLT 2017, STOC 2021, NeurIPS 2024]

Mechanism and game design [Balcan et al., EC18, NeurIPS 2024, Jin et al. NeurIPS 2024]

56

More applications [CS theory, Comp bio, Mechanism design …]

Open questions and research directions

● Provable tuning of hyperparameters in other fundamental algorithms and
areas, E.g.
○ Causal inference algorithms
○ Constraint Satisfaction e.g. algorithms for SAT
○ Graph Algorithms
○ Bayesian Optimization itself! (e.g. [Sharma and Suggala (AAAI 25)] tune GP bandits)
○ …

● Computational efficiency and complexity of hyperparameter tuning
● Lower bounds on sample complexity

○ Tight bounds known only in some cases

❖ Algorithm design for machine learning (aka HP tuning)
❖ Current approaches in practice

➢ Bayesian Optimization, Gradient-based and Bandit-based methods
❖ Machine learning for algorithm design

➢ Learning-theoretic foundations
➢ GJ algorithm framework

❖ Tuning core ML algorithms
➢ Decision Trees
➢ Neural networks

❖ Other aspects, ongoing and future research

58

Roadmap

ML needs to be interpretable!

INPUT OUTPUT
Key
factors??

Trustworthy?
Biased?

Decision Trees

Trees for classification:

- Each internal node ⇔ Splitting rule
- Each leaf node ⇔ Single Class

Interpretable ML models

- axis-parallel decision boundaries
- Neural nets are hard to interpret

Smoke
?

Age
> 30

Age
> 50

YES NO

YES YES NONO

Screen
lungs

Do
nothing

Screen
lungs

Do
nothing

Hard to learn optimal trees, but several useful heuristics!

Learning optimal decision trees is hard!

Hardness of DT learning

- NP-complete. [Laurent and Rivest (1976)]
- Superconstant Inapproximability of Decision Tree Learning.

[Koch et al. COLT 2024] [Koch and Strassle FOCS 2023, FOCS 2024]

Faster optimal decision trees (speed up the exp time branch-and-bound algorithm)

- [Hu et al. NeurIPS 2019]
- [McTavish et al. AAAI 2022]
- [Babbar et al. ICML 2025] (combines greedy with branch-and-bound)

Top-down decision tree learning
Inputs: Node function class , tree size t,
 splitting criterion G

Splitting criterion (a greedy approach)

Top-down decision tree learning
Inputs: Node function class , tree size t,
 splitting criterion G
● Start with leaf node

Splitting criterion

Top-down decision tree learning
Inputs: Node function class , tree size t,
 splitting criterion G
● Start with leaf node
● While at most t leaf nodes

○ Split leaf node l using node function f
which maximizes “splitting criterion”

Splitting criterion

Top-down decision tree learning
Inputs: Node function class , tree size t,
 splitting criterion G
● Start with leaf node
● While at most t leaf nodes

○ Split leaf node l using node function f
which maximizes “splitting criterion”

Smoke
?

YES NO

Screen
lungs

Do
nothing

Splitting criterion

= {Smoke, Age >30, Age >50}

Top-down decision tree learning
Inputs: Node function class , tree size t,
 splitting criterion G
● Start with leaf node
● While at most t leaf nodes

○ Split leaf node l using node function f
which maximizes “splitting criterion”

Smoke
?

YES NO

Screen
lungs

Age
> 50

YES

Screen
lungs

NO

Do
nothing

Key decision: Which node
to split next and how?

= {Smoke, Age >30, Age >50}

Splitting criterion

Splitting criterion

Empirical research suggests different criteria work best on different data [Mingers 1989]

● Entropy criterion
● Gini impurity
● Kearns Mansour 96

(α, β)-Tsallis entropy

A single criterion which interpolates all three!

Splitting criterion

Algorithm selection via hyperparameter tuning

Gini impurity

KM96

Entropy

Splitting criterion

Gini impurity

KM96

Entropy

Splitting criterion

Gini impurity

KM96

Entropy

Theorem: We can learn to tune (α, β) using problem samples.

Splitting criterion

Theorem: We can learn to tune (α, β) using problem samples.

Proof insights:
● Analyse accuracy as a function of (α, β) on a fixed instance (X, y)
● Induction over top-down rounds, bounding the number of distinct

behaviors (which node is split and how) in each round
● Over t rounds, Õ(|ፑ |2tt2t) distinct behaviors, which implies

pseudo-dimension is O(t log |ፑ |t).

Splitting criterion

The algorithm [Chipman, George, McCulloch 1998]

1. Prior:
a. Start with a single root node
b. For each node, split it with probability pSPLIT= σ(1 + d)–φ

c. Select uniformly random splitting rule at each node if split
d. Repeat step b for each new node

Bayesian trees

The algorithm [Chipman, George, McCulloch 1998]

1. Prior:
a. Start with a single root node
b. For each node, split it with probability pSPLIT= σ(1 + d)–φ

c. Select uniformly random splitting rule at each node if split
d. Repeat step b for each new node

2. Stochastic search:
a. T0 = initial skeleton with random rules according to Prior
b. T* ← obtained by small modification to Ti

c. Ti + 1 = T* with probability q(Ti, T*) based on Dirichlet posterior, Ti + 1 = Ti otherwise

Bayesian trees

The algorithm [Chipman, George, McCulloch 1998]

1. Prior:
a. Start with a single root node
b. For each node, split it with probability pSPLIT= σ(1 + d)–φ

c. Select uniformly random splitting rule at each node if split
d. Repeat step b for each new node

2. Stochastic search:
a. T0 = initial skeleton with random rules according to Prior
b. T* ← obtained by small modification to Ti

c. Ti + 1 = T* with probability q(Ti, T*) based on Dirichlet posterior, Ti + 1 = Ti otherwise

σ, φ are tunable
hyperparameters

Bayesian trees

Goal: Tune σ, φ to maximize expected accuracy of the learned decision tree for
datasets sampled according to some distribution D.

Insight: Analyze the structure of the loss as a function of hyperparameters for
fixed random bits

piecewise constant with exponential boundaries and at most t2N2 pieces over N
problem samples.

Result: O(log t / ε2) datasets sampled from D are sufficient to learn near-optimal
parameters σ, φ.

Bayesian trees

Post-processing step to simplify tree:

- Reduces overfitting
- Increases interpretability

Smoke
?

Age
> 30

Age
> 50

YES NO

YES YES NONO

Screen
lungs

Screen
lungs

Do
nothing

Asbestos
exposure

YES

Screen
lungs

NO

Screen
lungs

Pruning

Post-processing step to simplify tree:

- Reduces overfitting
- Increases interpretability

Smoke
?

Age
> 30

Age
> 50

YES NO

YES YES NONO

Screen
lungs

Screen
lungs

Do
nothing

Asbestos
exposure

YES

Screen
lungs

NO

Screen
lungs

Pruning

Post-processing step to simplify tree:

- Reduces overfitting
- Increases interpretability

Smoke
?

Age
> 50

YES NO

YES NO

Screen
lungs

Do
nothing

Screen
lungs

Pruning

Min cost-complexity pruning

- Maximizing accuracy on training set typically leads to large trees
- Add tree size as a penalty term in training loss

Cost-complexity, R(T, D) = L(T, D) + α|leaves(T)|

Tunable
hyperparameter

Pruning

Best HP is data-specific,

so need to learn!!

Result: O(log t / ε2) datasets sampled
from D are sufficient to learn
near-optimal α

Pruning

Similar to cost-complexity pruning, but also modify test loss

- η controls the accuracy-interpretability trade-off
- we tune splitting/pruning hyperparameters simultaneously to maximize the

modified objective

Modified objective, R(T, D) = L(T, D) + η|leaves(T)|

Interpretability vs accuracy

Splitting-criterion in XGBOOST [Chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a
score based on first and second order gradients

Regularized objective over a collection of K trees (size at most t),
 L({Ti}, D) = l({Ti}, D) + ½ λ ∑k ||weights of leaves in Tk||

2

Gradient-boosted decision trees

State-of-the-art approach for tabular datasets!
[McElfresh et al. (NeurIPS 2023), Jayawardhana et al. (2025)]

We use a GJ framework based analysis.

Splitting-criterion in XGBOOST [Chen and Guestrin (2016)]:

- Across all nodes of all trees in the ensemble, split the one that maximizes a
score based on first and second order gradients

Regularized objective over a collection of K trees (size at most t),
 L({Ti}, D) = l({Ti}, D) + ½ λ ∑k ||weights of leaves in Tk||

2

Gradient-boosted decision trees

There are at most tK|ፑ| different candidate splits, or at most t2K2|ፑ|2 pairs
Also over the course of XGBOOST, we have at most tK splits.
⇒ Computable using a GJ algorithm with at most (t2K2|ፑ|2)tK predicates (degree 6)
⇒ Pdim(U) = O(tK log(tK|ፑ|))

● Efficient implementations of learning algorithms
● Extensions to other interpretable techniques
● Lower bounds on sample efficiency
● Online learning
● Combining with other guarantees e.g. robustness

Open questions and research directions

❖ Algorithm design for machine learning (aka HP tuning)
❖ Current approaches in practice

➢ Bayesian Optimization, Gradient-based and Bandit-based methods
❖ Machine learning for algorithm design

➢ Learning-theoretic foundations
➢ GJ algorithm framework

❖ Tuning core ML algorithms
➢ Decision Trees
➢ Neural networks

❖ Other aspects, ongoing and future research

86

Roadmap

○ Parametric ReLU activation function

● Hyperparameter space A = [αmin, αmax] ⊂ ℝ (hyperparameter α)

● Model parameter space W ⊂ ℝ (parameters/weights w)

Tuning deep networks: parameters and hyperparameters

*inspired by DARTS approach for Neural Architecture Search [Liu et al. ICLR’19]
87

fixed during training

updated during training

● Example (learning activation functions):
○ Consider a DNN τα,w with model weights w = (w1, …, wL)

○ More generally, one can interpolate* any activation functions
 σ(z) = α o1(z) + (1 – α) o2(z)
 where o1, o2 are common activation functions, α is interpolation hyperparameter

Our focus here is on tuning “model” or “architectural” hyperparameters:

● Are directly a part of the learned deep network τα,w
● Impact training, but stay fixed as we learn the weights w

e.g. activation function parameters,

kernel parameter in graph neural networks

88

Model vs optimization hyperparameters

Contrast this with “optimization” hyperparameters in the training procedure of the deep network

● They impact training too, but their effect on the learned network is fully captured by w

e.g. learning rate

Formalism: the utility function

● Parameter-dependent utility function f(x, α, w)
the performance when using hyperparameter α and parameter w, operating on problem
instance x

89

● Utility function uα(x) = supw f(x, α, w)

the performance of trained network using hyperparameter α, operating on problem instance x

● Example

○ f(x, α, w) = H – ||y – τα,w(X)||2
2 is the parameter-dependent utility function

(the loss is ||y – τα,w(X)||2
2)

○ uα(x) = supw f(x, α, w) is the utility function

Formalism: data-driven hyperparameter tuning

90

● Tuned hyperparameter â that has performance close to the optimal α* = maxαEx ~ D[uα(x)]

with probability at least 1 – δ, using problem instances x1, … , xm ~ Dm

|Ex ~ D[uâ(x)] – Ex ~ D[uα*(x)]| < ε

● Question: How many problem instances m(ε, δ) are enough?

● Complexity measure: pseudo-dimension, Pdim(U)

○ The maximum size n such that U can “shatter” {x1, … , xn}, using thresholds t1, … , tn ∈ ℝ

○ by “shattering”, we mean

Statistical learning theory: sample complexity and pseudo-dimension

91

Given ε > 0 and 0 < δ < 1, what is the sample complexity m(ε, δ)?

● Standard PAC-Learning approach: bound the learning-theoretic complexity of U

U = {uα : X → [0, H] | α ∈ A}

|{sign(uα(x1) – t1), …, sign(uα(xn) – tn)| uα ∈ U}| = 2n

● Classical learning theory: If Pdim(U) is finite, then m(ε, δ) = O(H2/ε2(Pdim(U) + log 1/δ))

Piecewise polynomial parameter-dependent utility function

*[Bartlett et al. 1998, Bartlett et al. 2019]

92

● Recall utility function: uα(x) = supw f(x, α, w), where
parameter-dependent utility: f(x, α, w)

● Motivated by classical work on NNs*, we assume: for any fixed problem instance x,
the parameter-dependent dual fx(α, w) := f(x, α, w) admits a piecewise polynomial
structure:

○ There are polynomial boundary functions hx,1(α, w), …, hx,M(α, w) …

○ that partition the domain A ✕ W of fx(α, w) into connected components “pieces”
Rx,1, …, Rx, N

○ fx(α, w) restricted on Rx, i is polynomial fx, i(α, w) (piece function)

Piecewise polynomial structure: an example

boundary functions
93

● Boundary functions hx,1 and hx,2

Piecewise polynomial structure: an example

Connected components
94

● Boundary functions hx,1 and hx,2

● partition domain into connected
components Rx,1, …, Rx, N

Piecewise polynomial structure: an example

polynomial surfaces

95

● Boundary functions hx,1 and hx,2

● partition domain into connected
components Rx,1, …, Rx, N

● fx(α, w) restricted on Rx,i is poly. fx, i(α, w)

● Boundary functions hx,1 and hx,2

● partition domain into connected
components Rx,1, …, Rx, N

● fx(α, w) restricted on Rx,i is poly. fx, i(α, w)

Piecewise polynomial structure: an example

96

To bound Pdim(U), we’re interested in:

u*x(α) := uα(x) = supw fx(α, w)

Key mathematical question

boundary functions
97

● If fx(α, w) is piecewise-polynomial, can we
give a bound on the piecewise structure of

● To bound Pdim(U), it is sufficient to bound
the number of discontinuities and number
of local maxima of u*x(α)

u*x(α) := uα(x) = supw fx(α, w)

Main result

Theorem (informal): Pdim(U) = O(log N + d log(ΔM)), where

 N is the number of connected components

 M is the number of boundaries

 d is the dimension of w

 Δ is the maximum polynomial degree

98

Learning the interpolated activation function

● DNN τα,w with L layers

● Layer i: Wi params (total W), ki nodes (total k)

● σ(z) = α o1(z) + (1 – α) o2(z) , where o1, o2 piecewise poly.
with max degree Δ, p breakpoints

● T samples (not assumed iid) in each problem instance

99

Learning the interpolated activation function

100

For the activation function interpolation:
Pdim(U) = O(L2W log Δ + LW log(Tpk))

Application:

Theorem (informal): Pdim(U) = O(log N + d log(ΔM)), where

 N is the number of connected components

 M is the number of boundaries

 d is the dimension of w

 Δ is the maximum polynomial degree

New
Techniques

101

Analyze the piecewise structure of dual utility function: u*x(α) := uα(x) = supw fx(α,
w)

- bound number of discontinuities
- bound number of local maxima

102

Overall approach to bound Pdim(U)

Key steps in our analysis:

1. Effectively reduce the problem to a single piece with polynomial boundaries
2. Identify all possible locations of “best weights” w as the hyperparameter α is varied.

a. Roughly speaking, these are smooth 1-dimensional manifolds corresponding to
(appropriate intersections of) derivative curves or boundaries

3. Decompose these locations into “monotonic curves”
4. Bound the number of local extrema of fx(α, w) of along any monotonic curve

Step 1

Reduce the problem to a single piece with polynomial boundaries

103

- Partition hyperparameter space A into
intervals based on α-end points of the pieces

- Given a fixed finite set of pieces, it is
sufficient to analyze a single piece

Step 2

Where can the “best weights” possibly be
located?

Fermat’s interior extremum theorem

⇒ either boundaries, or

“derivative curves”

i.e. ∂fx(α, w) / ∂wi = 0 for i = 1, …, d

104

u*x(α) := uα(x) = supw fx(α, w)

Step 2

Where can the “best weights” possibly be
located?

– boundaries or derivative curves

(roughly) these are both smooth
1-dimensional manifolds under mild
regularity assumptions

105

Derivative curves:

∂fx(α, w) / ∂wi = 0 for i = 1, …, d

d (d-dimensional) hypersurfaces in ℝd+1

Step 2

Where can the “best weights” possibly be
located?

– boundaries or derivative curves

(roughly) these are both smooth
1-dimensional manifolds under mild
regularity assumptions

106

Intersections of S ≤ d boundaries:

hx,j(α, w) = 0 for j ∈ S

Lagrangian: fx(α, w) + ∑j λj hx,j(α, w)

⇒ d + S hypersurfaces in ℝd + S + 1

Step 3

Decompose these (almost everywhere) one-dimensional manifolds into monotonic
curves

Key property: if the hyperplane α = α0 intersects monotonic curve C, it does so in a
unique point

107

Step 4

Use the Lagrange Multiplier theorem and Bezout’s theorem* to bound the number of local
extrema of fx(α, w) along any monotonic curve C.

* (from algebraic geometry) roughly, gives a bound on the number of simultaneous
solutions of polynomial equations

108

C → intersection of polynomial equations (in α, w and possibly some Lagrange multipliers)

fx(α, w) → a polynomial objective

⇒ All the Lagrangian derivatives are polynomial equations

(a) The discontinuities of u*x(α) are upper bounded by our partition into intervals
with a fixed set of monotonic curves

109

Putting it all together

(b) Lemma: The local maxima of g(x) = max gi(x) are contained in the set of local
maxima of gi(x)

⇒ We can use Step 4 to bound the number of local maxima of u*x(α).Lemma: If there are at most B1 discontinuities and at most B2 local maxima in any u*x, then
Pdim(U) = O(log (B1+ B2)).

Gradient descent algorithm

Inputs: initial point x, iterations H, threshold θ. Hyperparameter: η

Output: xi

110

Beyond model parameters: gradient descent

Prior work by Gupta and Roughgarden (2016):

Assumes: f is convex and smooth

Sample complexity of tuning learning rate is O(H3/ε2)

We get O(H3/ε2) sample complexity even for
non-convex non-smooth functions!

❖ Algorithm design for machine learning (aka HP tuning)
❖ Current approaches in practice

➢ Bayesian Optimization, Gradient-based and Bandit-based methods
❖ Machine learning for algorithm design

➢ Learning-theoretic foundations
➢ GJ algorithm framework

❖ Tuning core ML algorithms
➢ Decision Trees
➢ Neural networks

❖ Other aspects, ongoing and future research

111

Roadmap

Semi-supervised learning

Three main ways to learn from data:

Supervised Unsupervised

cheaper, but can be less accurate
and/or less trustable

Semi-supervised

positive (true label)
negative (true label)

red/blue: observed label

[Chapelle, Scholkopf and Zien, 2006]
[Zhu and Goldberg, 2009]

112

Data-driven semi-supervised learning

★ Repeated problems e.g. emails on an email server, spam vs. non-spam
○ data: multiple partially labeled data sets from the same domain
○ desiderata: efficiency (labels, samples, computational)

Day 1 Day 2 Day 3

[Oral (55/9122, top 0.6%) at NeurIPS’2021;
joint work with Nina Balcan]

113

Graph-based algorithm families

 Use feature similarity of unlabeled examples

Use a graph to account for global and local
patterns in similarity

Add (stronger) edges between similar
examples

Run a graph partitioning algorithm, assign
appropriate labels to the pieces

114

?

Graph-based algorithm families

 Use feature similarity of unlabeled examples

Use a graph to account for global and local
patterns in similarity

Add (stronger) edges between similar
examples

Run a graph partitioning algorithm, assign
appropriate labels to the pieces

115

?

Graph-based algorithm families

Add (stronger) edges between similar
examples

Typical setup: Given a distance metric d(u,v),

Set graph edges based on d(u,v):

● Threshold (unweighted): add an edge if d(u,v) < r
● Exponential kernel: w(u,v) = exp(-d(u,v)2/𝝈2)

r, 𝝈 are hyperparameters
116

Graph-based algorithm families

Run a graph partitioning algorithm, assign
appropriate labels to the pieces

117

Graph-based algorithm families

s,t min-cut [Blum and Chawla, 2001]

Run a graph partitioning algorithm, assign
appropriate labels to the pieces

?

118

Graph-based algorithm families

s,t min-cut [Blum and Chawla, 2001]

● Connect a single node (with infinite
weight) to all nodes with the same label

Run a graph partitioning algorithm, assign
appropriate labels to the pieces

?

s

t

119

Graph-based algorithm families

s,t min-cut [Blum and Chawla, 2001]

● Connect a single node (with infinite
weight) to all nodes with the same label

● Compute the graph min-cut separating
these new nodes

Run a graph partitioning algorithm, assign
appropriate labels to the pieces

?

s

t

120

Graph-based algorithm families

Run a graph partitioning algorithm, assign
appropriate labels to the pieces

?

s

t

soft Mincut [Zhu, Lafferty and Ghahramani, 2003]

L(f, G) = Σu,vw(u,v)(f(u) – f(v))2

argminf l(f) = L(f, G)

f(u) ∈ {0,1} (hard labels, min-cut)

or f(u) ∈ [0,1] (soft labels, harmonic objective)

121

Model

122

Model – the labeling algorithm

Focus of most research!

[Blum&Chawla 2001]
[Zhu et al. 2003]
[Zhou et al. 2004]
…
…
[Wang et al. 2016]
[Avrachenkov et al. 2017]
[Liao et al. 2018]

123

Applied papers manually select r,𝝈. [Balcan et al. ICML 2005]
Recall:
Threshold graph G(r)
w(u,v) = I[d(u,v) < r]
Gaussian G(𝝈)
w(u,v) = exp(-d(u,v)2/𝝈2)

Heuristics
- Select r* = smallest r that connects the graph
- Select 𝝈 = r*/3 [Zhu 2005]

Model – selecting the graphModel – selecting the graph

124

Model – selecting the graph

Applied papers manually select r,𝝈. [Balcan et al. ICML 2005]
Recall:
Threshold graph G(r)
w(u,v) = I[d(u,v) < r]
Gaussian G(𝝈)
w(u,v) = exp(-d(u,v)2/𝝈2)

Heuristics
- Select r* = smallest r that connects the graph
- Select 𝝈 = r*/3 [Zhu 2005]

Model – selecting the graph

125

Model – selecting the graph

Applied papers manually select r,𝝈. [Balcan et al. ICML 2005]
Recall:
Threshold graph G(r)
w(u,v) = I[d(u,v) < r]
Gaussian G(𝝈)
w(u,v) = exp(-d(u,v)2/𝝈2)

Heuristics
- Select r* = smallest r that connects the graph
- Select 𝝈 = r*/3 [Zhu 2005]

r*

126

Model – the labeling algorithm

Graph construction is “more of an art, than science” [Zhu 2005]

Currently, graph construction “is more of an art than science” [Alexandrescu, Kirchhoff 2007]

Remains “more of an art, than science” [Subramanya, Bilmes 2009] [Ozaki et al. 2011]
[Eriguchi, Kobayashi 2014] … [Domingue et al. 2019]

127

Model – the loss function

128

Model – the loss function

129

Model – the loss function

130

Model – the loss function

Loss = 2/12 = 0.17

131

Model – the loss function

As you vary 𝝈 …

𝝈

l(𝝈)

132

Pseudo-dimension bounds and generalization

Tight upper and lower bounds!

Result: Pseudo-dimension of threshold-based family G(r) is 𝚯(log n).

133

Result: Pseudo-dimension of Gaussian kernel family G(𝝈) is 𝚯(n).

Model – online learning

Online learning: Given a sequence of problems, for each problem
● Select a graph G(σ) (by choosing σ)
● Label a partially labeled problem instance using labeling algorithm A
● All true labels are revealed, we suffer loss l(σ) for mislabeled examples

134

A key challenge

l(σ) is piecewise constant, can we still optimize?

Worst case: NO!

But real world data is usually not worst case ...

135

A key challenge

l(σ) is piecewise constant, can we still optimize?
Yes, provided discontinuities (over time) do not concentrate in any interval.

136

When can we learn the graph?

l(σ) is piecewise constant, can we still optimize?
Yes, provided discontinuities (over time) do not concentrate in any interval.

Dispersion: If in any interval I of width ε ≥ 1/√T, few discontinuities (in expectation).

E[maxI(# discontinuities in I)] = O(εT) [Balcan, Dick, Vitercik, FOCS 2018]

ε

lt(σ) lt(σ)

137

Online learning
Theorem: There exists an algorithm with O(1/√T) expected average regret
provided distance metric d(u,v) is “smooth”.

i.e. d(u,v) is distributed with κ-bounded density.

Regret(Alg. E) =

Loss suffered by
your graphs

Loss of best G
(in hindsight)

138

Online learning
Theorem: Algorithm E enjoys O(1/√T) expected average regret provided
distance metric d(u,v) is “smooth”.

i.e. d(u,v) is distributed with κ-bounded density.

Regret(Alg. E) =

Loss suffered by
E in T rounds

Loss of best G
(in hindsight)

Avg.

1/T

139

Online learning
Theorem: Algorithm E enjoys O(1/√T) expected average regret provided
distance metric d(u,v) is “smooth”.

i.e. d(u,v) is distributed with κ-bounded density.

140

Online learning
Theorem: Algorithm E enjoys O(1/√T) expected average regret provided
distance metric d(u,v) is “smooth”.

i.e. d(u,v) is distributed with κ-bounded density.

κ-bounded

e.g. N(μ,σ2)

κ-bounded

e.g. N(μ,σ2)

⇒

dispersion!

141

Online learning
Theorem: Algorithm E enjoys O(1/√T) expected average regret provided
distance metric d(u,v) is “smooth”.

i.e. d(u,v) is distributed with κ-bounded density.

⇒ We (almost) learn the best possible graph; gap decreases with T

142

1. Can be implemented in poly(n) time.
2. Can still achieve O(1/√T) expected average regret!!

Speeding up the algorithm…

Challenge: Large number of pieces!!

Solution: Just compute one piece – “feedback set” – in each round!

l(σ)

[Balcan, Dick, Pegden 2020]

143

Learning multi-parameter graphs

Multi-modal data – even more challenging to annotate!

Audio-visual Speech Recognition

d1 metric: audio signals

d2 metric: lip movement

d(u,v) = Σi αi di(u,v)

Lots of applications: Image captioning; video description; AVSR

144

Learning multi-parameter graphs (algorithms)

Challenge: Discontinuities lie along complex hypersurfaces (in parameter space)

Our results:

● O(1/√T) expected average regret!

● general results beyond semi-supervised learning

● tools from algebraic geometry

[Tarski–Seidenberg theorem]

P(x,y,z) = 0 , P polynomial in x,y and z
e.g. x2+y2+yz=0

145

Real-world datasets

● Classifying handwritten digits, handwritten letters, pictures…

MNIST Omniglot CIFAR-10

d(u,v) = Euclidean distance b/w pixel vectors

146

Real-world datasets (single problem instance)

r

𝝈

l(r)

l(𝝈)

Performance of G(𝝈)
strongly depends on 𝝈

It is a piecewise
constant dependence

Recall:
Threshold graph G(r)
w(u,v) = I[d(u,v) < r]
Gaussian G(𝝈)
w(u,v) = exp(-d(u,v)2/𝝈2)

0.0

0.0

0.5

0.5

147

Randomly drawn problem instances

Variation in optimal parameters!

148

Randomly drawn problem instances

Our algorithm obtains low regret!
(as good as optimal graph)

149

Other aspects of online learning

● Handling distribution shifts via shifting regret [Balcan, Dick, Sharma (AISTATS 2020)]

150

Regret(Alg. E) =

Loss suffered by
E in T rounds

Loss of best G
(in hindsight)

Avg.

1/T

Usual
“static”
regret

Regret(Alg. E) =

Loss suffered by
E in T rounds

Loss of best sequence G1,
G2, …, Gk (up to k shifts)

Avg.

1/T

“shifting”
regret

Other aspects of online learning

● Handling multiple tasks [Balcan, Khodak, Sharma, Talwalkar (NeurIPS 2021)]

151

Regret(Alg. E) =

Loss suffered by
E in T rounds

Loss of best G
(in hindsight)

Avg.

1/T

Usual
“single-task”
regret

Regret(Alg. E) =

Loss suffered by
E in T rounds

Loss of best Gi
(for task i)

Task
Avg.

1/T

Average
“multi-task”
regret

1/m

● Other applications to tuning important hyperparameters and algorithms

● Focus on statistical complexity computationally efficient methods?

● Making currently used approaches in practice more structure-aware

● Beyond the worst-case complexity: distribution-dependent bounds

● More challenging high-dimensional and distributed settings
○ E.g. extend our model hyperparameter tuning result to multiple

hyperparameters

152

Open questions and research directions

e.g. [Balcan, Goyal, Sharma (2025)]

References

153

[1] Bergstra, James, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. "Algorithms for hyper-parameter optimization." Advances in neural information
processing systems 24 (2011).

[2] Feurer, Matthias, and Frank Hutter. Hyperparameter optimization. Springer International Publishing, 2019.

[3] Bischl, Bernd, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas et al. "Hyperparameter optimization: Foundations,
algorithms, best practices, and open challenges." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13, no. 2 (2023): e1484.

[4] Franceschi, Luca, Michele Donini, Valerio Perrone, Aaron Klein, Cédric Archambeau, Matthias Seeger, Massimiliano Pontil, and Paolo Frasconi.
"Hyperparameter Optimization in Machine Learning." arXiv preprint arXiv:2410.22854 (2024).

[5] Mockus, Jonas. "The Bayesian approach to local optimization." In Bayesian approach to global optimization: Theory and applications, pp. 125-156.
Dordrecht: Springer Netherlands, 1989.

[6] Srinivas, Niranjan, Andreas Krause, Sham Kakade, and Matthias Seeger. "Gaussian Process Optimization in the Bandit Setting: No Regret and
Experimental Design." In Proceedings of the 27th International Conference on Machine Learning, pp. 1015-1022. Omnipress, 2010.

[7] Frazier, Peter I. "A tutorial on Bayesian optimization." arXiv preprint arXiv:1807.02811 (2018).

[8] Maclaurin, Dougal, David Duvenaud, and Ryan Adams. "Gradient-based hyperparameter optimization through reversible learning." In International
conference on machine learning, pp. 2113-2122. PMLR, 2015.

[9] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." In International conference on
machine learning, pp. 1126-1135. PMLR, 2017.

References

154

[10] Franceschi, Luca, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. "Bilevel programming for hyperparameter optimization
and meta-learning." In International conference on machine learning, pp. 1568-1577. PMLR, 2018.

[11] Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. "Hyperband: A novel bandit-based approach to
hyperparameter optimization." Journal of Machine Learning Research 18, no. 185 (2018): 1-52.

[12] Falkner, Stefan, Aaron Klein, and Frank Hutter. "BOHB: Robust and efficient hyperparameter optimization at scale." In International conference on
machine learning, pp. 1437-1446. PMLR, 2018.

[13] Parker-Holder, Jack, Vu Nguyen, and Stephen J. Roberts. "Provably efficient online hyperparameter optimization with population-based bandits."
Advances in neural information processing systems 33 (2020): 17200-17211.

[14] Gupta, Rishi, and Tim Roughgarden. "A PAC approach to application-specific algorithm selection." In Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, pp. 123-134. 2016.

[15] Maria-Florina Balcan. Data-Driven Algorithm Design. In Tim Roughgarden, editor, Beyond the Worst-Case Analysis of Algorithms. Cambridge
University Press, 2020.

[16] Linial, Nathan, Yishay Mansour, and Noam Nisan. "Constant depth circuits, Fourier transform, and learnability." Journal of the ACM (JACM) (1993).

[17] Balcan, Maria-Florina, and Dravyansh Sharma. "Learning Accurate and Interpretable Decision Trees." In Uncertainty in Artificial Intelligence, pp.
288-307. PMLR, 2024. Extended version “Learning Accurate and Interpretable Tree-based Models” arXiv preprint arXiv:2405.15911.

[18] Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "DARTS: Differentiable Architecture Search." In International Conference on Learning
Representations, 2019.

References

155

[19] Balcan, Maria-Florina, Anh Tuan Nguyen, and Dravyansh Sharma. "Sample complexity of data-driven tuning of model hyperparameters in neural
networks with structured parameter-dependent dual function." arXiv preprint arXiv:2501.13734 (2025).

[20] Balcan, Maria-Florina, Travis Dick, and Manuel Lang. "Learning to Link." In International Conference on Learning Representation. 2020.

[21] Balcan, Maria-Florina, Misha Khodak, Dravyansh Sharma, and Ameet Talwalkar. "Provably tuning the ElasticNet across instances." Advances in
Neural Information Processing Systems 35 (2022): 27769-27782.

[22] Balcan, Maria-Florina, and Dravyansh Sharma. "Data driven semi-supervised learning." NeurIPS (2021): 14782-14794.

[23] Balcan, Maria-Florina, Travis Dick, and Ellen Vitercik. "Dispersion for data-driven algorithm design, online learning, and private optimization." In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 603-614. IEEE, 2018.

[24] Balcan, Maria-Florina, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen Vitercik. "How much data is sufficient to learn
high-performing algorithms? Generalization guarantees for data-driven algorithm design." Symposium on Theory of Computing (STOC), 2021.

[25] Balcan, Maria-Florina, Anh Tuan Nguyen, and Dravyansh Sharma. "Algorithm Configuration for Structured Pfaffian Settings." TMLR (2025).

[26] Koch, Caleb, Carmen Strassle, and Li-Yang Tan. "Properly learning decision trees with queries is NP-hard." In 2023 IEEE 64th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 2383-2407. IEEE, 2023.

[27] Lin, Jimmy, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. "Generalized and scalable optimal sparse decision trees." In International
conference on machine learning, pp. 6150-6160. PMLR, 2020.

[28] Balcan, Maria-Florina, Saumya Goyal, and Dravyansh Sharma. "Distribution-dependent Generalization Bounds for Tuning Linear Regression Across
Tasks." arXiv preprint arXiv:2507.05084 (2025).

References

156

[29] Balcan, Maria-Florina, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. "Learning-to-learn non-convex piecewise-Lipschitz functions."
Advances in Neural Information Processing Systems 34 (2021): 15056-15069.

[30] Balcan, Maria-Florina, Anh Nguyen, and Dravyansh Sharma. "New bounds for hyperparameter tuning of regression problems across instances."
Advances in Neural Information Processing Systems 36 (2023): 80066-80078.

[31] Balcan, Maria-Florina, Christopher Seiler, and Dravyansh Sharma. "Accelerating ERM for data-driven algorithm design using output-sensitive
techniques." Advances in Neural Information Processing Systems 37 (2024): 72648-72687.

[32] Sharma, Dravyansh, and Maxwell Jones. "Efficiently learning the graph for semi-supervised learning." In Uncertainty in Artificial Intelligence, 2023.

[33] Sharma, Dravyansh. "Data-driven algorithm design and principled hyperparameter tuning in machine learning." PhD dissertation, CMU (2024).

[34] Sharma, Dravyansh, and Arun Suggala. "Offline-to-online hyperparameter transfer for stochastic bandits." In Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 39, no. 19, pp. 20362-20370. 2025.

[35] Balcan, Maria-Florina, Avrim Blum, Dravyansh Sharma, and Hongyang Zhang. "An analysis of robustness of non-lipschitz networks." Journal of
Machine Learning Research 24, no. 98 (2023): 1-43.

[36] Sharma, Dravyansh, Maria-Florina Balcan, and Travis Dick. "Learning piecewise Lipschitz functions in changing environments." In International
Conference on Artificial Intelligence and Statistics, pp. 3567-3577. PMLR, 2020.

[37] Hazan, Elad, Adam Klivans, and Yang Yuan. "Hyperparameter Optimization: A Spectral Approach." ICLR (2018).

[38] Bartlett, Peter, Piotr Indyk, and Tal Wagner. "Generalization bounds for data-driven numerical linear algebra." In Conference on Learning Theory, pp.
2013-2040. PMLR, 2022.

